首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Surface acoustic wave MEMS gyroscope   总被引:6,自引:0,他引:6  
The design and performance evaluation of a surface acoustic wave (SAW) MEMS gyroscope is presented in this paper. This gyroscope is an integration of a SAW resonator and a SAW sensor. The SAW resonator is used to setup a stable reference vibration and SAW sensor is used for the detection of the secondary SAW generated by the Coriolis force. Further to this resonator, strategically positioned metallic dots that form an array along the standing wave anti-node locations are subjected to the reference vibratory motion. These vibrating dot arrays through the Coriolis effect will generate secondary SAW, which is picked up by the SAW sensor. The SAW resonator is designed and optimized using coupling-of-modes (COM) theory. In view of its one-layer planar configuration, this gyroscope can be implemented easily for applications requiring conformal mounting onto a surface of interest. This SAW gyroscope can be competitively priced inherently rugged, reliable and very sensitive. It is also capable of being wirelessly interrogated, without any sensor power source.  相似文献   

3.
A procedure of deriving nonlinear wave equations that describe the propagation and interaction of hyperelastic cylindrical waves in composite materials modeled by a mixture with two elastic constituents is outlined. Nonlinearity is introduced by metric coefficients, Cauchy-Green strain tensor, and Murnaghan potential. It is the quadratic nonlinearity of all governing relations. For a configuration (state) dependent on the radial coordinate and independent of the angular and axial coordinates, quadratically nonlinear wave equations for stresses are derived and a relationship between the components of the stress tensor and partial strain gradient is established. Four combinations of physical and geometrical nonlinearities in systems of wave equations are examined. Nonlinear wave equations are explicitly written for three of the combinations __________ Translated from Prikladnaya Mekhanika, Vol. 43, No. 6, pp. 63–72, June 2007.  相似文献   

4.
A method for solving equations that describe the dynamics of wave packets of the Tollmien–Schlichting waves in the boundary layer is proposed. The method of splitting the initial problem into the linear and nonlinear parts at each time step is used. The linear part is resolved by using an equation for spectral components of the wave packet with a subsequent Fourier transform from the space of wavenumbers to the physical space. A system of ordinary differential equations is solved in the physical space. The Fourier transform is performed by means of the library procedure of the fast Fourier transform. As examples, the problems solved were the linear dynamics of the wave packet concentrated in the vicinity of the instability region (i.e., a set of wave vectors in the space of wavenumbers for which the imaginary part of the eigenfrequency of the Tollmien–Schlichting waves is positive) and the nonlinear dynamics of the wave packet overlapping the instability region.  相似文献   

5.
6.
In this paper, the complexification-averaging (CX-A) method for multi-DOF nonlinear vibratory systems is rederived in a new way based upon the averaged Lagrangian. The complex variables are introduced to represent the original displacements and velocities, and then the fast–slow decomposition of the complex variables is made. The time averaging of the Lagrangian over the fast variables is performed. Two different expressions for the kinetic energy are presented, and this results in two schemes for deriving the governing equations of the slow variables. For the scheme I, through the order analysis of the derivatives of the slow variables, it is shown that the second-order terms appeared in the averaged Lagrangian can be omitted, and thus a reduced averaged Lagrangian is obtained. Via the reduced averaged Lagrangian, the corresponding Lagrangian equations are derived. For the scheme II, through time averaging, the averaged Lagrangian is obtained, and then the corresponding equations for the slow variables can be obtained. Finally, two nonlinear vibratory systems with two-DOF and four-DOF, respectively, are given as examples to illustrate the new procedure for the CX-A method. The loci of nonlinear normal modes on the potential surface are studied in the first example, and the frequency-energy plot is investigated in the second example.  相似文献   

7.
Diffraction of nonlinear waves by single or multiple in-line vertical cylinders in shallow water is studied by use of different nonlinear, shallow-water wave theories. The fixed, in-line, vertical circular cylinders extend from the free surface to the seafloor and are located in a row parallel to the incident wave direction. The wave–structure interaction problem is studied by use of the nonlinear generalized Boussinesq equations, the Green–Naghdi shallow-water wave equations, and the linearized version of the shallow-water wave equations. The wave-induced force and moment of the Green–Naghdi and the Boussinesq equations are presented when the incoming waves are cnoidal, and the forces are compared with the experimental data when available. Results of the linearized equations are compared with the nonlinear results. It is observed that nonlinearity is very important in the calculation of the wave loads on circular cylinders in shallow water. The variation of wave loads with wave height, wavelength and the spacing between cylinders is studied. Effect of the neighboring cylinders, and the shielding effect of upwave cylinders on the wave-induced loads on downwave cylinders are discussed.  相似文献   

8.
R. Grimshaw 《Wave Motion》1981,3(1):81-103
Modulations of an internal gravity wave packet in a stratified shear flow are discussed in the weakly nonlinear and weakly dispersive context. It is shown that the modulations are described by a variable coefficient nonlinear Schrödinger equation when the modulations are confined to the direction of wave propagation. Transverse modulations couple the nonlinear Schrödinger equation to the mean flow equations. For long waves, it is shown that the modulation equations may be somewhat simplified. An Appendix describes the equations governing long wave resonance.  相似文献   

9.
In this paper, we investigate bounded traveling waves of the generalized nonlinear Klein–Gordon model equations by using bifurcation theory of planar dynamical systems to study the effects of horizontal singular straight lines in nonlinear wave equations. Besides the well-known smooth traveling wave solutions and the non-smooth ones, four kinds of new bounded singular traveling wave solution are found for the first time. These singular traveling wave solutions are characterized by discontinuous second-order derivatives at some points, even though their first-order derivatives are continuous. Obviously, they are different from the singular traveling wave solutions such as compactons, cuspons, peakons. Their implicit expressions are also studied in this paper. These new interesting singular solutions, which are firstly founded, enrich the results on the traveling wave solutions of nonlinear equations. It is worth mentioning that the nonlinear equations with horizontal singular straight lines may have abundant and interesting new kinds of traveling wave solution.  相似文献   

10.
Nonlinear wave processes in a liquid containing gas bubbles are studied. The effects of viscosity and heat transfer on the phase interface are taken into account. A family of nonlinear evolutionary equations for describing pressure waves in a gas-liquid mixture is constructed. It is shown that, for describing nonlinear wave processes on different scales of the coordinate and time, nonlinear evolutionary equations of the second, third, and fourth order may be used. Exact solutions of the equations constructed are obtained. The specific features of nonlinear wave processes in a liquid with gas bubbles are discussed.  相似文献   

11.
In this paper a mathematical model is given for the scattering of an incident wave from a surface covered with microscopic small Helmholtz resonators, which are cavities with small openings. More precisely, the surface is built upon a finite number of Helmholtz resonators in a unit cell and that unit cell is repeated periodically. To solve the scattering problem, the mathematical framework elaborated in Ammari et al. (2019) is used. The main result is an approximate formula for the scattered wave in terms of the lengths of the openings. Our framework provides analytic expressions for the scattering wave vector and angle and the phase-shift. It justifies the apparent absorption. Moreover, it shows that at specific lengths for the openings and a specific frequency there is an abrupt shift of the phase of the scattered wave due to the subwavelength resonances of the Helmholtz resonators. A numerically fast implementation is given to identify a region of those specific values of the openings and the frequencies.  相似文献   

12.
Common piezoelectric resonators such as quartz resonators have a very high Q and ultra stable resonant frequency. However, due to small material nonlinearities in the quartz crystal, the resonator is drive level dependent, that is, the resonator level of activity and its frequency are dependent on the driving, or excitation, voltage. The size of these resonators will be reduced to one fourth of their current sizes in the next few years, but the electrical power which is applied will not be reduced as much. Hence, the applied power to resonator size ratio will be larger, and the drive level dependency may play a role in the resonator designs.We study this phenomenon using the Lagrangian nonlinear stress equations of motion and Piola–Kirchhoff stress tensor of the second kind. Solutions are obtained using COMSOL for the AT-cut, BT-cut, SC-cut and other doubly rotated cut quartz resonators and the results compared well with experimental data. The phenomenon of the drive level dependence is discussed in terms of the voltage drive, electric field, power density and current density. It is found that the drive level dependency is best described in terms of the power density. Experimental results for the AT-, BT- and SC-cut resonators in comparison with our model results are presented. Results for new doubly rotated cuts are presented. The effects of spurious modes, quality factor and air damping on DLD are presented.  相似文献   

13.
A three-dimensional (3D) predictor-corrector finite difference method for standing wave is developed. It is applied to solve the 3D nonlinear potential flow equa- tions with a free surface. The 3D irregular tank is mapped onto a fixed cubic tank through the proper coordinate transform schemes. The cubic tank is distributed by the staggered meshgrid, and the staggered meshgrid is used to denote the variables of the flow field. The predictor-corrector finite difference method is given to develop the difference equa- tions of the dynamic boundary equation and kinematic boundary equation. Experimental results show that, using the finite difference method of the predictor-corrector scheme, the numerical solutions agree well with the published results. The wave profiles of the standing wave with different amplitudes and wave lengths are studied. The numerical solutions are also analyzed and presented graphically.  相似文献   

14.
A method is developed for the identification of the dynamic properties of nonlinear viscoelastic materials using transient response information arising from impact tests. The solutions of the identification problem and that of the associated nonlinear wave propagation problem are shown to be coupled. They are accomplished via application of the method of lines, the Runge-Kutta-Pouzet integration scheme with automatic step size control and Powell's method of unconstrained optimization. Numerical experiments are performed to demonstrate the feasibility, accuracy and stability of the solution procedure established, and wave propagation experiments are conducted to investigate the applicability of the method to a real physical system. The results are of particular interest in the modeling of nonlinear viscoelastic materials and the identification of systems governed by nonlinear hyperbolic partial-integro-differential equations.  相似文献   

15.
港口非线性波浪耦合计算模型研究   总被引:5,自引:1,他引:4  
建立了外域用差分法求解高阶Boussinesq方程、内域用边界元法求解Laplace方程的二维船 非线性波浪力时域计算的耦合模型. 研究了该类耦合模型的匹配条件、耦合求解过程和内域、 外域公共区域长度的确定. 该耦合模型计算结果与只用边界元求解Laplace方程模型的计算 结果和实验结果对比表明,该耦合模型不仅计算精度高,而且计算效率快,适用于研究较大 区域内波浪对物体的非线性作用.  相似文献   

16.
Weiguo Rui 《Nonlinear dynamics》2014,76(2):1529-1542
It is well known that it is difficult to obtain exact solutions of some partial differential equations with highly nonlinear terms or high order terms because these kinds of equations are not integrable in usual conditions. In this paper, by using the integral bifurcation method and factoring technique, we studied a generalized Gardner equation which contains both highly nonlinear terms and high order terms, some exact traveling wave solutions such as non-smooth peakon solutions, smooth periodic solutions and hyperbolic function solutions to the considered equation are obtained. Moreover, we demonstrate the profiles of these exact traveling wave solutions and discuss their dynamic properties through numerical simulations.  相似文献   

17.
A technique for numerically investigating resonators based on their exposure to broadband noise with a subsequent analysis of the input and output signal spectra is proposed. Resonance chambers connected with a waveguide through its wall are numerically investigated using both linear (linearized Euler equations) and nonlinear (Euler and Navier-Stokes equations) models. The general features of the linear resonance and the influence of nonlinear effects and dissipation on sound-absorbing properties are studied. The dependence of the resonator parameters on the presence of an axial flow and the boundary layer thickness is investigated for the model based on the Navier-Stokes equations.  相似文献   

18.
This paper addresses the propagation of high amplitude acoustic pulses through a 1D lattice of Helmholtz resonators connected to a waveguide. Based on the model proposed by Sugimoto (1992), a new numerical method is developed to take into account both the nonlinear wave propagation and the different mechanisms of dissipation: the volume attenuation, the linear viscothermal losses at the walls, and the nonlinear absorption due to the acoustic jet formation in the resonator necks. Good agreement between numerical and experimental results is obtained, highlighting the crucial role of the nonlinear losses. Different kinds of solitary waves are observed experimentally with characteristics depending on the dispersion properties of the lattice.  相似文献   

19.
An explicit formulation to study nonlinear waves interacting with a submerged body in an ideal fluid of infinite depth is presented. The formulation allows one to decompose the nonlinear wave–body interaction problem into body and free‐surface problems. After the decomposition, the body problem satisfies a modified body boundary condition in an unbounded fluid domain, while the free‐surface problem satisfies modified nonlinear free‐surface boundary conditions. It is then shown that the nonlinear free‐surface problem can be further reduced to a closed system of two nonlinear evolution equations expanded in infinite series for the free‐surface elevation and the velocity potential at the free surface. For numerical experiments, the body problem is solved using a distribution of singularities along the body surface and the system of evolution equations, truncated at third order in wave steepness, is then solved using a pseudo‐spectral method based on the fast Fourier transform. A circular cylinder translating steadily near the free surface is considered and it is found that our numerical solutions show excellent agreement with the fully nonlinear solution using a boundary integral method. We further validate our solutions for a submerged circular cylinder oscillating vertically or fixed under incoming nonlinear waves with other analytical and numerical results. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

20.
The nonlinear equations that underlie the analysis of classical Rayleigh waves are derived for the two-dimensional case of nonlinear elastic deformation described by the Murnaghan model. In addition to the case of presence of both geometrical and physical nonlinearities, two special cases are considered where one only type of nonlinearity is taken into account. It is shown that unlike the one-dimensional problems for plane waves where only three types of nonlinear interaction should be allowed for, the two-dimensional problems should include 24 types of nonlinear interaction. In the case of geometrical nonlinearity alone, a preliminary analysis of the nonlinear equations is carried out. Second-order equations are derived. The second approximation includes the second harmonics of the wave itself and its attenuating amplitude and is nonlinearly dependent on the initial amplitude of the Rayleigh wave and linearly increasing with the distance traveled by the wave  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号