首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Double-emulsion droplets may be assembled into highly concentric shells using a uniform AC electric field to induce dipole/dipole interactions. The resulting force centers the inner droplet with respect to the outer shell if the outer droplet has a higher dielectric constant than the ambient, suspending liquid. The dielectric constant of the inner droplet does not influence this condition. Applying an electric field >104 Vrms/m achieves centering of approximately 3–6 mm diameter droplets suspended in ~10 centipoise liquids within ~60 s. If the outer shell is electrically conductive, the effect depends strongly on frequency. In the case of the monomer-containing liquids requisite to forming foam shells for laser target fabrication, the electrical field frequency must be ~10 MHz or higher. Because of very stringent requirements imposed on the concentricity and sphericity of laser targets, electric field induced droplet distortion must be minimized. Consequently, the liquid constituents must be matched in density to ~0.1%.  相似文献   

2.
《Current Applied Physics》2010,10(2):703-707
This paper demonstrates the manipulation of neutral dielectric wires with high aspect ratio by a pulsed electric field. Dielectrophoretic (DEP) force and torque were employed to align the randomly positioned GaN nano- and micro-wires. A simulation of the DEP force alignment process confirmed the experimentally observed dependence on alignment yield to frequency and bias of the electric field. Current–voltage measurements of the GaN micro-wires, aligned by DEP force and torque to pre-patterned metal contacts, confirms that the direct manipulation of micro-sized wire with an electric field oscillated at a frequency of 10 kHz–5 MHz.  相似文献   

3.
A reflection non-contact ultrasonic microscope system working both in amplitude and phase difference modes at 2 MHz has been developed using an air-coupled concave transducer made of piezoelectric polymer films of poly(vinylidene fluoride/trifluoroethylene) [P(VDF/TrFE)]. The transducer is composed of three 95 μm-thick P(VDF/TrFE) films stacked together, each of which is activated electrically in parallel by a driving source. The transducer has a wide aperture angle of 140° and a focal length of 10 mm. The measured two-way transducer insertion loss is 80 dB at 1.83 MHz. Despite 20 dB higher insertion loss than that estimated from Mason’s equivalent circuit, we have obtained clear amplitude acoustic images of a coin with transverse resolution of 150 μm, and clear phase difference acoustic images of the rough surface of a paper currency bill with depth resolution of sub-micrometer. Using two planar transducers of P(VDF/TrFE), we have also successfully measured in through-transmission mode the sound velocity and absorption of a 3 mm-thick silicone-rubber plate. The present study proves that, owing to its low acoustic impedance and flexibility, P(VDF/TrFE) piezoelectric film is very useful for high frequency acoustic imaging in air in the MHz range.  相似文献   

4.
In order to construct an anechoic chamber satisfying international standards for EMI testing, it has been recognized that the absorption characteristics of the EM wave absorber must be higher than 20 dB over the frequency band from 30 MHz to 18 GHz. In this paper, an EM wave absorber with super wide-band frequency characteristics is proposed and designed in order to satisfy the above requirements by using the EMCM and FDTD. As a result, the proposed absorber has absorption characteristics higher than 20 dB over the frequency band from 30 MHz to more than 20 GHz.  相似文献   

5.
In this work, high frequency and low power ultrasound without external heating source and mechanical stirring in biodiesel production were studied. Transesterification of soybean oil with methanol and catalyzed by KOH was investigated using ultrasound equipment and ultrasonic transducer. The effect of ultrasonic output power (3 W–9 W), ultrasonic frequency (1 MHz and 3 MHz), and alcohol to oil molar ratio (6:1 and 8:1) have been investigated. The increase in ultrasonic power provided higher conversion rates. In addition, higher conversion rates were obtained by increasing the ultrasonic frequency from 1 MHz to 3 MHz (48.7% to 79.5%) for the same reaction time. Results also indicate that the speed of sound can be used to evaluate the produced biodiesel qualitatively. Further, the ultrasound system presented electric consumption (46.2 W∙h) four times lower than achieved using the conventional method (211.7 W∙h and 212.3 W∙h). Thus, biodiesel production using low power ultrasound in the MHz frequency range is a promising technology that could contribute to biodiesel production processes.  相似文献   

6.
《Current Applied Physics》2010,10(6):1427-1435
The paper presents a new body RF coil design scheme for a low-field open MRI system. The RF coil is composed of four rectangular loops which are made of wide copper strips located near the surfaces of the bottom and top pole faces of the permanent magnet. The body RF coil has been designed by using the pseudo electric dipole radiation (PEDPR) method with the Metropolis algorithm. In the calculation of the RF fields via the finite difference time domain (FDTD) method, the computational time increases as the RF frequency becomes lower. Moreover, the computational process using the FDTD method takes a very long time when the RF coil is optimized. The optimization requires varying the configuration of the RF coil system and performing successive calculations of field strength and field homogeneity. When we perform these successive calculations, the computational time can be reduced by using the PEDPR method, where the segmented current elements of the RF coil are treated as pseudo electric dipole radiation sources. Because the RF coil is made of wide strips, the variation of the current density on the strip has been considered in the B1-field calculation. For each configuration of the RF coil system, the current distribution is calculated via circuit analysis, where each copper strip is considered as a parallel combination of current element lines. The preliminary field calculation study by the FDTD method verifies both the circuit analysis method for the current distribution and the PEDPR method for the radiation field strength. The optimization of the RF coil configuration is performed by the Simulated Annealing (SA) process using the Metropolis algorithm. Simulations have been performed for a 10 MHz RF frequency. The optimized RF coil has four rectangular loops of 37 cm × 100 cm with 6.5 cm wide strips which are separated vertically 49 cm and horizontally center-to-center 63 cm. In the 25 cm diameter of spherical volume (DSV), the design results show a good field inhomogeneity of the B1-field below 0.49 dB (5.8%).  相似文献   

7.
High resolution chronoamperometry has been used to characterize the effect of two non-ionic surfactants, Triton® X-100 and NCW®-1002, on cavitation in aqueous solutions exposed to ~1 MHz sound field. Specifically, using ferricyanide as the electroactive species, temporal variation of current during its reduction on a 25 μm Pt microelectrode has been measured and is used to elucidate transient cavity behavior. The chronoamperograms for solutions exposed to megasonic field show current ‘peaks’ riding on the baseline current. These current ‘peaks’ have been attributed to the diffusion of ferricyanide species concentrated at the liquid–vapor interface of a transient cavity at the end of its collapse. In the presence of surfactants, the frequency of occurrence of current ‘peaks’ with magnitude ?0.3 μA is found to increase indicating a higher number of transient cavity collapses. A simple mathematical model based on diffusion developed previously by the authors has been used to extract the maximum cavity size and range of distances between the center of the collapsing cavity and the electrode surface in the surfactant solutions.  相似文献   

8.
We develop a model of single spherical cell electroporation and simulate spatial and temporal aspects of the transmembrane potential and pore radii as an effect of any form of applied electric field. The extent of electroporation in response to sinusoidal electric pulses of two different frequencies in a range of extracellular conductivity for two different cell radii are compared. Results show that pore radii tend to be more normalized for AC fields. The relative difference in fractional pore area is reduced by the use of a 1 MHz sinusoidal applied electric field over a 100 kHz field.  相似文献   

9.
The performance of an ultrasound reactor chamber relies on the sound pressure level achieved throughout the system. The active volume of a high frequency ultrasound chamber can be determined by the sound pressure penetration and distribution provided by the transducers. This work evaluated the sound pressure levels and uniformity achieved in water by selected commercial scale high frequency plate transducers without and with reflector plates. Sound pressure produced by ultrasonic plate transducers vertically operating at frequencies of 400 kHz (120 W) and 2 MHz (128 W) was characterized with hydrophones in a 2 m long chamber and their effective operating distance across the chamber’s vertical cross section was determined. The 2 MHz transducer produced the highest pressure amplitude near the transducer surface, with a sharp decline of approximately 40% of the sound pressure occurring in the range between 55 and 155 mm from the transducer. The placement of a reflector plate 500 mm from the surface of the transducer was shown to improve the sound pressure uniformity of 2 MHz ultrasound. Ultrasound at 400 kHz was found to penetrate the fluid up to 2 m without significant losses. Furthermore, 400 kHz ultrasound generated a more uniform sound pressure distribution regardless of the presence or absence of a reflector plate. The choice of the transducer distance to the opposite reactor wall therefore depends on the transducer plate frequency selected. Based on pressure measurements in water, large scale 400 kHz reactor designs can consider larger transducer distance to opposite wall and larger active cross-section, and therefore can reach higher volumes than when using 2 MHz transducer plates.  相似文献   

10.
《Applied Surface Science》2005,239(3-4):432-436
Boron nitride (BN) nanometer thin films are synthesized on Si (1 0 0) substrates by RF reactive magnetron sputtering. Then the film surfaces are treated in the case of the base pressure below 5 × 10−4 Pa and the temperature of 800 and 1000 °C, respectively. And the films are studied by Fourier transform infrared spectra (FTIR), atomic force microscopic (AFM) and field emission characteristics at different annealing temperature. The results show that the surface heat treatment makes no apparent influence on the surface morphology of the BN films. The transformations of the sample emission characteristics have to do with the surface negative electron affinity (NEA) of the films possibly. The threshold electric fields are lower for BN samples without heat-treating than the treated films, which possibly ascribed to the surface negative electron affinity effect. A threshold field of 8 V/μm and the emission current of 80 μA are obtained. The surface NEA is still presence at the heat treatment temperature of 800 °C and disappeared at temperature of 1000 °C.  相似文献   

11.
In order to obtain better detection results of heterodyne, we used phase IQ quadrature demodulation algorithm to process the data which detected by laser heterodyne. Based on laser heterodyne interferometer, processing the data in the interferometer phase IQ quadrature demodulation algorithm from the signal to noise ratio, sampling rate, sampling rate, filter order and cutoff frequency, verify the effects of these system parameters to the phase precision, and choose the best parameters to obtain a better phase precision through experiment as: the signal to noise ratio is 25 dB, the IF signal frequency is 98.3 MHz, 98.5 MHz, 99.1 MHz, 99.5 MHz and 100 MHz, the sampling rate is 512–2048, the cutoff frequency and order of the filter are 0.11 and 40, respectively.  相似文献   

12.
We report the results of DC current–voltage characteristics, resistivity and conduction mechanism of 2500 Å thick ZnS films deposited by e-beam evaporation technique for applications of surface passivation in HgCdTe based devices. The typical near zero bias leakage currents were very low and varying from 37 fA to 1.1 pA corresponding to a resistivity variation of 2.2 × 1012 to 1.0 × 1013 ohm cm for the well behaved devices. The films showed typically leakage current densities of under 3 × 10?9 A/cm2 near zero bias. These observations were further analyzed for conduction mechanism results prevailing in our films. As regards current transport, these films showed trends of Ohmic conduction in low electric field strengths, combination of Ohmic conduction and Frenkel–Poole (FP) for medium field strengths and FP conduction for high electric field strengths. All the experimental observations could be fitted very well using the said conduction mechanisms. We have shown that ZnS can continue to be used as passivant for modern high density area arrays based on HgCdTe and in order to further improve the performance of this passivant, one has to reduce FP conduction at high fields of greater than 0.25 MV/cm.  相似文献   

13.
《Ultrasonics sonochemistry》2014,21(6):2138-2143
The delivery of a consistent quality product to the consumer is vitally important for the food industry. The aim of this study was to investigate the potential for using high frequency ultrasound applied to pre- and post-rigor beef muscle on the metabolism and subsequent quality. High frequency ultrasound (600 kHz at 48 kPa and 65 kPa acoustic pressure) applied to post-rigor beef striploin steaks resulted in no significant effect on the texture (peak force value) of cooked steaks as measured by a Tenderometer. There was no added benefit of ultrasound treatment above that of the normal ageing process after ageing of the steaks for 7 days at 4 °C. Ultrasound treatment of post-rigor beef steaks resulted in a darkening of fresh steaks but after ageing for 7 days at 4 °C, the ultrasound-treated steaks were similar in colour to that of the aged, untreated steaks. High frequency ultrasound (2 MHz at 48 kPa acoustic pressure) applied to pre-rigor beef neck muscle had no effect on the pH, but the calculated exhaustion factor suggested that there was some effect on metabolism and actin-myosin interaction. However, the resultant texture of cooked, ultrasound-treated muscle was lower in tenderness compared to the control sample. After ageing for 3 weeks at 0 °C, the ultrasound-treated samples had the same peak force value as the control. High frequency ultrasound had no significant effect on the colour parameters of pre-rigor beef neck muscle. This proof-of-concept study showed no effect of ultrasound on quality but did indicate that the application of high frequency ultrasound to pre-rigor beef muscle shows potential for modifying ATP turnover and further investigation is warranted.  相似文献   

14.
The giant magneto-impedance (GMI) ratio, ΔZ/Z=[(Z(H)−Z(Hmax)]/Z(Hmax), in a nearly zero magnetostrictive Co68.5Mn6.5Si10B15 amorphous microwire has been investigated for the frequency range 0.5–10 MHz, driving current amplitude of 0.5–2.5 mA, bias DC magnetic field up to 2400 A/m and under applied tensile stress up to 132 MPa. A maximum relative change in the GMI ratio up to around 130% is observed at a frequency of 10 MHz, magnetic DC field of about 180 A/m, driving current amplitude of 1 mA and under tension of 60 MPa. The tensile stress dependence of the magnetic field, Hm, corresponding to the maximum ΔZ/Z ratio allows to estimate the magnetostriction constant (λs≈−2×10−7) to be in good agreement with λs values estimated by different methods and in amorphous alloys with similar compositions.  相似文献   

15.
《Ultrasonics sonochemistry》2014,21(6):2122-2130
The formation of metallic particulates from erosion was investigated by running a series of transducers at various frequencies in water. Two low frequency transducer sonotrodes were run for 7.5 h at 18 kHz and 20 kHz. Three high frequency plates operating at megasonic frequencies of 0.4 MHz, 1 MHz, and 2 MHz were run over a 7 days period. Electrical conductivity and pH of the solution were measured before and after each run. A portion of the non-sonicated and treated water was partially evaporated to achieve an 80-fold concentration of particles and then sieved through nano-filters of 0.1 μm, 0.05 μm, and 0.01 μm. An aliquot of the evaporated liquid was also completely dried on strips of carbon tape to determine the presence of finer particles post sieving. An aliquot was analyzed for detection of 11 trace elements by Inductively Coupled Plasma Mass Spectroscopy (ICPMS). The filters and carbon tapes were analyzed by FE-SEM imaging to track the presence of metals by EDS (Energy Dispersive Spectroscopy) and measure the particle size and approximate composition of individual particles detected. Light microscopy visualization was used to calculate the area occupied by the particles present in each filter and high resolution photography was used for visualization of sonotrode surfaces. The roughness of all transducers before and after sonication was tested through profilometry. No evidence of formation of nano-particles was found at any tested frequency. High amounts of metallic micron-sized particles at 18 kHz and 20 kHz formed within a day, while after 7 day runs only a few metallic micro particles were detected above 0.4 MHz. Erosion was corroborated by an increase in roughness in the 20 kHz tip after ultrasound. The elemental analysis showed that metal leach occurred but values remained below accepted drinking water limits, even after excessively long exposure to ultrasound. With the proviso that the particles measured here were only characterized in two dimensions and could be nanoparticulate in terms of the third dimension, this research suggests that there are no serious health implications resulting from the formation of nanoparticles under the evaluation conditions. Therefore, high frequency transducer plates can be safely operated in direct contact with foods. However, due to significant production of metallic micro-particulates, redesign of lower frequency sonotrodes and reaction chambers is advised to enable operation in various food processing direct-contact applications.  相似文献   

16.
Recent research has shown that high frequency ultrasound (0.4–3 MHz), can enhance milkfat separation in small scale systems able to treat only a few milliliters of sample. In this work, the effect of ultrasonic standing waves on milkfat creaming was studied in a 6 L reactor and the influence of different frequencies and transducer configurations in direct contact with the fluid was investigated. A recombined coarse milk emulsion with fat globules stained with oil-red-O dye was selected for the separation trials. Runs were performed with one or two transducers placed in vertical (parallel or perpendicular) and horizontal positions (at the reactor base) at 0.4, 1 and/or 2 MHz (specific energy 8.5 ± 0.6 kJ/kg per transducer). Creaming behavior was assessed by measuring the thickness of the separated cream layer. Other methods supporting this assessment included the measurement of fat content, backscattering, particle size distribution, and microscopy of samples taken at the bottom and top of the reactor. Most efficient creaming was found after treatment at 0.4 MHz in single and double vertical transducer configurations. Among these configurations, a higher separation rate was obtained when sonicating at 0.4 MHz in a vertical perpendicular double transducer setup. The horizontal transducer configuration promoted creaming at 2 MHz only. Fat globule size increase was observed when creaming occurred. This research highlights the potential for enhanced separation of milkfat in larger scale systems from selected transducer configurations in contact with a dairy emulsion, or emulsion splitting in general.  相似文献   

17.
《Solid State Ionics》2006,177(26-32):2313-2316
The operation of langasite (La3Ga5SiO14) resonators as sensors at elevated temperature and controlled atmospheres is examined. This paper focuses on mapping the regimes of gas-insensitive operation of uncoated langasite resonators and the correlation to langasite's defect chemistry for temperatures up to 1000 °C. As a measure of sensitivity, the fundamental resonant mode at 5 MHz is estimated to be determined to within ± 4 Hz by network analysis for resonators operated in air at temperatures below 1000 °C. The calculated frequency shift induced by redox-related reactions in langasite only exceeds the limit of ± 4 Hz below pO2  10 17 bar at 1000 °C, below 10 24 bar at 800 °C and below 10 36 bar at 600 °C. Water vapor is found to shift the resonance frequency at higher oxygen partial pressures. In the hydrogen-containing atmospheres applied here, langasite can be regarded as a stable resonator material above oxygen partial pressures of about 10 13 and 10 20 bar at 800 and 600 °C, respectively.  相似文献   

18.
《Ultrasonics》2014,54(1):296-304
This paper investigates a new method for fabrication of broadband line-focus ultrasonic transducers by sol–gel spin-coating the poly(vinylidene difluoride-trifluroethylene) [P(VDF-TrFE)] copolymer film on a concave fine-polished beryllium copper backing. The ferroelectric hysteresis loops of the P(VDF-TrFE) films spin-coated from different molar ratios of VDF/TrFE, 77/23 and 55/45, were measured to select the better mixture. Owing to the better acoustic matching to water, compared with lead zirconate titanate (PZT), the fabricated transducers show relatively wide bandwidth of approximately 50 MHz with high central frequency of 60 MHz obtained at the focal plane when a fused-quartz acts as a reflecting target. Each one of the two finished transducers has a focal length of 5 mm and a full aperture angle of 90°. After applying the specially developed digital signal processing algorithm to the defocusing experiment data, which is called V(f,z) analysis method based on two-dimensional fast Fourier transform (2-D FFT), the operating frequency can extend from several MHz to over 90 MHz. Surface acoustic wave (SAW) velocities of a typical (1 0 0) silicon wafer was measured along various directions between [1 0 0] and [0 1 0] to represent the anisotropic features.  相似文献   

19.
A flame-like superhydrophobic yttrium aluminum garnet surface was obtained by a simple approach under ambient conditions. The influences of the concentration of curing agent and paraffin wax in course of the experiment were investigated. The as-prepared film shows superhydrophobicity which has a water contact angle of 158 ± 1.0°, and sliding angle of 4 ± 1.0°. Moreover, the water contact angle of the rough surface remained higher than 150°, after exposure for 10 days. Transmission electronic microscope, scanning electronic microscope, fluorescence spectrometer and atomic force microscope were also used to characterize the samples.  相似文献   

20.
Yuh Ming Hsu  Chung Cheng Chang 《Optik》2012,123(18):1627-1631
In this study, the oscillation conditions for series photodetector frequency circuit system were proposed and verified experimentally. The effect of the capacitance Cp and oscillator phase θ on the oscillation ability of series photodetector frequency circuit system was investigated. It revealed that series photodetector frequency circuit system possessed excellent oscillation ability, but the oscillation ability decreased with increasing oscillator phase or decreasing capacitance Cp, even resulted in a cease-to oscillate zone. Moreover, this study elucidated the frequency response and optical detection of series photodetector frequency circuit system matched with PMMA for fluorescence dye concentration. In accordance with Hex fluorescence dye concentrations and frequency responses, the detection limit of fluorescence dye concentration 3.3 pmol/L can be measured by 100 MHz sensor system matched with PMMA. The results also showed that the frequency shift of 100 MHz sensor system matched with PMMA was linearly related to the logarithm of fluorescence dye concentration from 3.3 pmol/L to 33.3 μmol/L.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号