首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigate the possibility of using a TiO2 anode as an alternative to the Li electrode in Li–air and Li-ion rechargeable batteries. TiO2 nanotube layer is fabricated by the anodization method and optional thermal treatment is conducted. The electrochemical charge/discharge profile of the TiO2/liquid electrolyte/LiCoO2 structured cell is measured under the flowing of O2, N2 and Ar, respectively. The elevation of the upper cut-off voltage from 3 to 4.5 V leads to an increase in the specific capacity by a factor of more than three. We suppose this to be a novel mechanism in which the TiO2/LiCoO2 system under the oxygen atmosphere works in Li–air battery mode up to 3 V and then works in Li-ion battery mode from 3 V to 4.5 V. This idea is confirmed by ICP-OES analysis.  相似文献   

2.
We investigated the effect of a Nb2O5 blocking layer formed through the sol–gel method introduced to a titanium metal foil electrode in a flexible dye sensitized solar cell. The blocking layer formed directly on the working electrode physically separates the working electrode from the electrolyte, and prevents back transfer of electrons from the electrode to the electrolyte. The gel processing conditions (sol reaction time) and heat treatment temperature used in formation of the Nb2O5 blocking layer have been shown to affect the performance of the dye sensitized solar cell and optimal values of these parameters have been determined. A sol reaction time of 45 min and heat treatment temperature of 550 °C has been observed to result in optimal cell performance (η = 6.185%, Jsc = 13.233 mA/cm2, Voc = 0.672 V, ff = 0.694). Introduction of an Nb2O5 blocking layer enhances solar cell efficiency by 39.7%, which is much greater than the increase of 24.6% observed in a similar cell containing a TiO2 blocking layer under standard illumination conditions. The results obtained via Nb2O5 have been observed to be superior to those obtained via a TiO2 blocking layer.  相似文献   

3.
In this study, a symmetric electrochemical capacitor was fabricated by adopting a lithium iron phosphate (LiFePO4)-activated carbon (AC) composite as the core electrode material in 1.0 M Na2SO3 and 1.0 M Li2SO4 aqueous electrolyte solutions. The composite electrodes were prepared via a facile mechanical mixing process. The structural properties of the nanocomposite electrodes were characterised by scanning electron microscopy (SEM) and Brunauer–Emmett–Teller (BET) analysis. The electrochemical performances of the prepared composite electrode were studied using cyclic voltammetry (CV), galvanostatic charge–discharge (CD) and electrochemical impedance spectroscopy (EIS). The experimental results reveal that a maximum specific capacitance of 112.41 F/g was obtained a 40 wt% LiFePO4 loading on an AC electrode compared with that of a pure AC electrode (76.24 F/g) in 1 M Na2SO3. The improvement in the capacitive performance of the 40 wt% LiFePO4–AC composite electrode is believed to be attributed to the contribution of the synergistic effect of the electric double layer capacitance (EDLC) of the AC electrode and pseudocapacitance via the intercalation/extraction of H+, OH, Na+ and SO32− and Li+ ions in LiFePO4 lattices. In contrast, it appears that the incorporation of LiFePO4 into AC electrodes does not increase the charge storage capability when Li2SO4 is used as the electrolyte. This behaviour can be explained by the fact that the electrolyte system containing SO42− only exhibits EDLC in the Fe-based electrodes. Additionally, Li+ ions that have lower conductivity and mobility may lead to poorer charge storage capability compared to Na+ ions. Overall, the results reveal that the AC composite electrodes with 40 wt% LiFePO4 loading on a Na2SO3 neutral electrolyte exhibit high cycling stability and reversibility and thus display great potential for electrochemical capacitor applications.  相似文献   

4.
The present paper describes electrochemical characteristics of photo-electrochemical cell during light-on and light-off regimes. The cell involves TiO2 as photo-anode and Pt as cathode both immersed in a aqueous electrolyte. The photo-voltage was determined for two different cell structures both equipped with TiO2 as photo-anode. The first cell involved a homogeneous electrolyte system, formed of Na2SO4, and photo-anode made of pressed polycrystalline TiO2. The second cell involved an electrolyte of different pH at both electrodes (ΔpH=14.6) and TiO2 thin film (deposited in Ti) as photo-anode. Maximum photo-voltage of these cells was 0.7 V and 1.3 V, respectively.  相似文献   

5.
Bi2S3 thin film electrode has been synthesized by simple and low cost successive ionic layer adsorption and reaction (SILAR) method on stainless steel (SS) substrate at room temperature. The formation of interconnected nanoparticles with nanoporous surface morphology has been achieved and which is favourable to the supercapacitor applications. Electrochemical supercapacitive performance of Bi2S3 thin film electrode has been performed through cyclic voltammetry, charge-discharge and stability studies in aqueous Na2SO4 electrolyte. The Bi2S3 thin film electrode exhibits the specific capacitance of 289 Fg−1 at 5 mVs−1 scan rate in 1 M Na2SO4 electrolyte.  相似文献   

6.
In this research, polyacrylamide/Ag composite is synthesized and used as an electrode in an electrochemical capacitor (EC). The characterization of the composite is performed by X-ray diffraction, scanning electron microscopy, and cyclic voltammetry methods. The electrochemical characterization is conducted in an electrolytic solution of KOH and an electrolytic solution of Na2SO4. The capacitance of the polyacrylamide/Ag composite is associated mainly with the reduction/oxidation of Ag. The specific capacitance of the EC using the KOH electrolyte is 950 Fg?1, which is better than the capacitance in the Na2SO4 electrolyte. This behavior is explained by the respective physical characteristics of the two electrolytes.  相似文献   

7.
Nanoporous TiO2 having enhanced surface area was synthesized by sol–gel method. An “environmental friendly” method for production of furfuryl alcohol was presented by electrocatalytic reduction of furfural to furfuryl alcohol in ionic liquid medium at the surface of nanoporous TiO2 film electrode. The heterogeneous catalytic redox behaviour of a nanoporous TiO2 film electrode surface was investigated by cyclic voltammetry (CV). It was found that the catalytic reduction of furfural by Ti(IV)/Ti(III) redox system on the nanoporous TiO2 film surface. The electrode reaction mechanism is called catalytic (EC′) mechanism, current density can reach 38 mA/cm2 and yielding an overall conversion efficiency of 61.7%.  相似文献   

8.
Photoelectrochemical properties of FTO/BiVO4 electrode were investigated in different electrolytic solutions, potassium chloride (KCl) and sodium sulphate (Na2SO4), and under visible light irradiation condition. In order to accomplish that, an FTO/BiVO4 electrode was built by combining the solution combustion synthesis technique with the dip-coating deposition process. The morphology and structure of the BiVO4 electrode were investigated through X-ray diffraction, scanning electron microscopy, Fourier transform infrared spectroscopy, and Raman spectroscopy. Photoelectrochemical properties were analyzed through chronoamperometry measurements. Results have shown that the FTO/BiVO4 electrode presents higher electroactivity in the electrolyte Na2SO4, leading to better current stabilization, response time, and photoinduced current density, when compared to KCl electrolyte. Besides, this electrode shows excellent performance for methylene blue degradation under visible light irradiation condition. In Na2SO4, the electrode has shown higher degradation rate, 51 %, in contrast to 44 % in KCl, plus higher rate constant, 174?×?10?4 min?1 compared to 150?×?10?4 min?1 in KCl. Results presented in this communication leads to the indication of BiVO4 thin films as alternate materials to use in heterogeneous photoelectrocatalysis, more specifically in decontamination of surface water.  相似文献   

9.
The oxide layers of electrolytic oxidized titanium (Ti) were characterized using Ti L2,3 and O K edge X-ray absorption. The spectra show that the structure of the oxide layers that are formed during a 1 min treatment are dependent on the concentration of the electrolyte (H2SO4 or Na2SO4) with which the Ti surface was treated, and also on the magnitude of the potential that was applied during the anodic oxidation process (100 V or 150 V). It is found that a potential of 150 V and an electrolyte concentration of 0.5 M or 1.0 M produces a layer of TiO2 having rutile crystal structure.  相似文献   

10.
Zn–Ni–TiO2 and Zn–TiO2 nanocomposites were prepared by galvanostatic cathodic square wave deposition. X-ray diffraction analysis and scanning electron microscopy revealed that the occlusion of TiO2 nanoparticles (spherical shaped with diameter between 19.5 and 24.2 nm) promotes the formation of the γ-Ni5Zn21 phase, changes the preferred crystallographic orientation of Zn from (101) and (102) planes to (002), and decreases the particle size of the metallic matrices. The stability of the nanocomposites immersed in near-neutral 0.05 mold m−3 Na2SO4 solution (pH 6.2) was investigated over 24 h. The initial open circuit potential for the Zn–Ni–TiO2 and Zn–TiO2 coatings were −1.32 and −1.51 V (vs. Hg/Hg2SO4), respectively, and changed to −1.10 and –1.49 V (vs. Hg/Hg2SO4) after 24 h of immersion. Data extracted from the steady state polarization curves demonstrated that the metal–TiO2 nanocomposites have, with respect to the metal coatings, a higher corrosion potential in the case of the Zn–Ni alloy composite; a lower corrosion potential in the case of Zn-based nanocomposite albeit the predominant (002) crystallographic orientation; and a lower initial corrosion resistance due to the smaller grain size and higher porosity in the Zn–Ni–TiO2 and Zn–TiO2 nanocomposites. Morphological and chemical analyses showed that a thicker passive layer is formed on the surface of the Zn–Ni–TiO2 and Zn–TiO2 deposits. After 24 h of immersion in the sulphate solution, the Zn–Ni–TiO2 coating has the highest corrosion stability due to the double-protective action created by the deposit’s surface enrichment in Ni plus the higher amount of corrosion products.  相似文献   

11.
《Current Applied Physics》2010,10(2):391-394
Energy-storage composite electrodes were prepared by mixing activated carbons (ACs) modified with nanosize titanium oxide (TiO2) through ultrasonic vibration in ethanol solution for 30 min. We examined the cyclic voltammetry of the composite electrodes in an aqueous electrolyte, 1 M H2SO4. It was found that the specific capacitance of the composite electrodes measured in a range of 0–0.8 V was increased from 100 to 155 F/g compared electrodes comprised of ACs only. This was attributed to a reduction of polarization of the ACs modified by nanosized TiO2.  相似文献   

12.
Stable electrochemical capacitive properties of chemically grown cadmium oxide film electrode composed of micron-sized discrete crystals in 1 M Na2SO4 electrolyte with a specific capacitance of 1190 mF/g studied over 1000 cycles are reported. Structural and morphological characterizations of micron-sized discrete CdO crystals have been carried out using power X-ray diffraction, scanning electron microscopy and energy dispersive X-ray analysis. Electrochemical capacitive properties of micron-sized CdO discrete crystals on tin-doped indium oxide electrode have been investigated using cyclic voltammetry and chronopotentiometry.  相似文献   

13.
To study the fate of a molecular di‐μ‐oxo‐bridged trinuclear ruthenium complex, [(NH3)5Ru–O–Ru(NH3)4–O–Ru(NH3)5]6+, also known as Ru‐red, during the electro‐driven water oxidation reaction, electrochemical in situ surface enhanced Raman spectroscopy (SERS) investigations have been conducted on an electrochemically roughened gold surface in acidic condition. It was previously described that on a basal plane pyrolitic graphite electrode in 0.1 M H2SO4 aqueous solution, Ru‐red undergoes one electron oxidative conversion into a stable higher oxidation state ruthenium complex, Ru‐brown, at <1.0 V (vs normal hydrogen electrode (NHE)), and this leads to water oxidation and dioxygen release, but the fate of Ru‐red during electrochemistry was not studied in much detail. In this investigation, Ru‐red dispersed in acid electrolyte and immobilized on a roughened gold electrode without Ru‐red in solution has been subjected to anodic controlled potential experiments, and in situ SERS was carried out at various potentials in succession. The electrochemical SERS data obtained for Ru‐red are also compared with in situ SERS results of an electrodeposited ruthenium oxide thin film on the Au disk. Our study suggests that on a gold electrode in sulfuric acid solution containing Ru‐red, one electron oxidative conversion of Ru‐red to a higher oxidation state ruthenium compound, Ru‐brown, occurs at ca. 0.74 V (vs NHE), as supported by the electrochemical in situ SERS experiments. Moreover, at higher potentials and on Au disk, the Ru‐red / Ru‐brown are not stable and slowly decompose or electro‐oxidize leading to deactivation of the tri‐ruthenium catalytic system in acidic medium. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
An increasing energy demand and environmental pollution create a pressing need for clean and sustainable energy solutions. TiO2 semiconductor material is expected to play an important role in helping solve the energy crisis through effective utilization of solar energy based on photovoltaic devices. Dye-sensitized solar cells (DSSCs) are potentially lower cost alternative to inorganic silicon-based photovoltaic cells. In this study, we report on the fabrication of DSSCs from anodic TiO2 nanotubes (NT) powder, produced by rapid breakdown potentiostatic anodization of Ti foil in 0.1 M HClO4 electrolyte, as photoanode. TiO2 NT powders with a typical NT outer diameter of approximately 40 nm, wall thickness of approximately 8–15 nm, and length of about 20–25 μm, have been synthesized. The counter electrode was made by electrodeposition of Pt from an aqueous solution of 5 mM H2PtCl6 onto fluorine-doped tin oxide (FTO) glass substrate. The above front-side illuminated DSSCs were compared with back-side illuminated DSSCs fabricated from anodic TiO2 NTs that were grown on the top of Ti foil as photoanode. The highest cell efficiency was 3.54% under 100 mW/cm2 light intensity (1 sun AM 1.5G light, Jsc = 14.3 mA/cm2, Voc = 0.544 V, FF = 0.455). To the best of our knowledge, this is the first report on the fabrication of DSSC from anodic TiO2 NTs powder. The TiO2/FTO photoanodes were characterized by FE-SEM, XRD, and UV–Visible spectroscopy. The catalytic properties of Pt/FTO counter electrodes have been examined by cyclic voltammetry.  相似文献   

15.
In this study, the open-circuit photovoltage (V oc) decay technique was used to investigate the relationship between the electrode film morphology and the open-circuit photovoltage. Results indicate that dye-sensitized solar cells (DSCs) based on ordered arrays of TiO2 nanostructures (100 nm external diameters and 20–50 nm internal diameters) generally show higher open-circuit photovoltage (V oc) values than those based on sintered TiO2 nanoparticles (20–40 nm diameters). In particular, cells based on thick nanotubules (wall thickness ≥ 45 nm in our research) and on nanorods (100 nm diameters) show particularly high V oc values, indicating slow recombination kinetics under open-circuit conditions. It can be argued that the nanorods and the thick nanotubules act like singles crystals and therefore the injected electrons in the inner TiO2 molecules are shielded from holes in the electrolyte under open-circuit conditions. The open-circuit recombination time constant of electrons accumulated in the TiO2 conduction band is therefore prolonged and resulting in high V oc values.  相似文献   

16.
The present work reports the effect of light on the open-circuit voltage of a photoelectrochemical cell (PEC) formed of TiO2 photoanode, Pt cathode and Na2SO4 (0.35 M) aqueous solution as electrolyte. The studies included the measurements of the electromotive force (EMF) during the light-off and light-on cycles for the PEC involving photoanode that was made of both oxidised and reduced TiO2 thin films. These specimens were formed by oxidation of the titanium metal at high and low oxygen activities. This was achieved by the imposition of the gas phase of two different compositions, including air, p(O2) = 21 kPa, and the hydrogen–water vapour mixture, p(O2) = 10-10p({\rm O}_2) = 10^{-10} Pa, at 1,123 K and subsequent cooling to room temperature. The determined data indicate that the PEC formed of the oxidised specimen exhibits larger EMF and a substantially better stability in time. It is, therefore, concluded that the TiO2 obtained in air exhibits superior performance-related properties compared to the reduced specimen. The obtained experimental EMF data are considered in terms of the effect of light on the reactivity of TiO2 with oxygen and water and the related charge transfer.  相似文献   

17.
The sonoelectrochemical degradation of phenol in aqueous solutions with stainless steel electrodes and high-frequency ultrasound (850 kHz) was investigated. A 60% synergetic effect was obtained in the combined reaction system. High concentration of electrolyte (sodium sulfate) and a high electrical voltage are favorable conditions for the degradation of phenol. A nearly complete degradation of phenol was achieved with 4.26 g/L Na2SO4 and 30 V electrical voltages at 25 °C in 1 h. The degradation of phenol follows pseudo-first order kinetics. Considering costs and application, the energy efficiency of the reaction system with different reaction conditions was evaluated.  相似文献   

18.
LiCoO2 particles were synthesized by a sol-gel process. X-ray diffraction analysis reveals that the prepared sample is a single phase with layered structure. A hybrid electrochemical capacitor was fabricated with LiCoO2 as a positive electrode and activated carbon (AC) as a negative electrode in various aqueous electrolytes. Pseudo-capacitive properties of the LiCoO2/AC electrochemical capacitor were determined by cyclic voltammetry, charge–discharge test, and electrochemical impedance measurement. The charge storage mechanism of the LiCoO2-positive electrode in aqueous electrolyte was discussed, too. The results showed that the potential range, scan rate, species of aqueous electrolyte, and current density had great effect on capacitive properties of the hybrid capacitor. In the potential range of 0–1.4 V, it delivered a discharge specific capacitance of 45.9 Fg–1 (based on the active mass of the two electrodes) at a current density of 100 mAg–1 in 1 molL–1 Li2SO4 aqueous electrolyte. The specific capacitance remained 41.7 Fg–1 after 600 cycles.  相似文献   

19.

Solid polymer electrolytes (SPEs) based on polyethylene oxide (PEO) complexed with magnesium triflate Mg(Tf)2 or Mg(CF3SO3)2) and incorporating the ionic liquid (IL) (1-butyl-1-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide (PYR14TFSI)) were prepared by solution cast technique. The electrolyte was optimized and characterized using electrical conductivity, cationic transport number measurements, and cyclic voltammetry. The highest conductivity of the PEO/Mg(Tf)2, 15:1 (molar ratio), electrolyte at room temperature was 1.19 × 10−4 S cm−1 and this was increased to 3.66 × 10−4 S cm−1 with the addition of 10 wt.% ionic liquid. A significant increase in the Mg2+ ion transport number was observed with increasing content of the ionic liquid in the PEO-Mg(Tf)2 electrolyte. The maximum Mg2+ ion transport number obtained was 0.40 at the optimized electrolyte composition. A battery of the configuration Mg/ and [(PEO)15:Mg(Tf)2+10%IL]/TiO2-C was assembled and characterized. Preliminary studies showed that the discharge capacity of the battery was 45 mA h g−1.

  相似文献   

20.
In order to prevent the charge recombination at the interface between the transparent-conducting oxide (TCO) substrate and electrolyte, a TiO2 compact layer was deposited on the substrate by hydrolysis of TiCl4 aqueous solution. Optimum thickness of the compact layer was found to be ∼25 nm, which showed ∼24% increase in the power-conversion efficiency compared with the bare cell. Impedance spectra indicated that the interfacial charge-transfer resistance of TCO/electrolyte interface was increased by more than a factor of three with the TiO2 compact layer at 0.4 V. Moreover, the electron-carrier lifetime of the 25 nm-deposited cell was improved by a factor of five compared with the bare cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号