首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
Electrospray was combined with an electrostatic precipitator (ESP) to enhance the collection efficiency of monodisperse nanometer-sized particles. The electrospray of deionized water produced water droplets with sizes ranging from 10 to 300 μm. The combination of the ESP with the electrospray enhanced collection of particles by 21–36% depending on the particle size. The combination of the ESP and the electrospray was also found to reduce the energy consumption of the ESP.  相似文献   

2.
In this work, the results of electrohydrodynamic (EHD) secondary flow and particle collection efficiency measurements in a spike-plate type electrostatic precipitator (ESP) are presented. The EHD secondary flow was measured using 2- and 3-dimensional particle image velocimetry (PIV) method under the negative DC voltage. The PIV measurements were carried out in several cross-sectional planes along and across the ESP duct. The results show a complex and turbulent flow structure in the ESP. The EHD secondary flow significantly depends on applied voltage and measuring cross-sectional plane position in respect to the spike tip. The partial collection efficiency of the ESP was measured for negative and positive DC voltage. The particle concentration with and without discharge was measured at the ESP exit using an optical aerosol spectrometer.  相似文献   

3.
A novel wet electrostatic precipitator (WESP) is designed for effective control of fine aerosol from humid gases. It operates on the principle of unipolar particle charging in the corona discharge and particle precipitation under the field of their own space charge. The new precipitator is characterized by high gas velocity in the ionizing stage. Tests were carried out for gas with (NH4)2SO4, HCl and (NH4)Cl aerosol at particle number concentration up to 5·107#/cm3 and mass concentration 10–1000 mg/Nm3. For test conditions one-field WESP ensures mass collection efficiency 90–97% and two-field electrostatic precipitator up to 99%.  相似文献   

4.
5.
《Journal of Electrostatics》2006,64(3-4):259-262
In this paper, the results of the particle image velocimetry measurements of the flow velocity fields in an intermediate spacing wire-to-plate type electrostatic precipitator (ESP) with a single positive polarity wire electrode are presented. The observation plane was placed perpendicular to the wire electrode at its half-length. The investigation showed significant influence of the electric field and charge on the flow patterns in the intermediate spacing ESP under an extreme large electrohydrodynamic (EHD) number. The EHD forces cause the formation of strong vortex pairs in the upstream and downstream ESP regions for Ehd/Re2>1.  相似文献   

6.
Recently, narrow electrostatic precipitators (ESPs) have become a subject of interest because of their possible application for the cleaning of the exhaust gases emitted by diesel engines. Diesel engines emit fine particles, which are harmful to human and animal health. There are several methods for decrease particulate emission from a diesel engines, but up to now, these methods are not enough effective or very expensive. Therefore, an electrostatic precipitation was proposed as an alternative method for control of a diesel particulate emission.In this work, results of electrohydrodynamic (EHD) secondary flow and particle collection efficiency measurements in a narrow wire-cylinder type ESP are presented. The ESP was a glass cylinder (300 mm × 29 mm) equipped with a wire discharge electrode and two collecting cylinder-electrodes. A 0.23 mm in diameter and 100 mm long stainless-steel discharge wire electrode was mounted in the center of the cylinder, parallel to the main flow direction. The collecting electrodes were made of stainless steel cylinders, each with a length of 100 mm and inner diameter of 25.5 mm. An air flow seeded with a cigarette smoke was blown along the ESP duct with an average velocity of 0.9 m/s.The EHD secondary flow was measured using 2-dimensional particle image velocimetry (PIV) method. The PIV measurements were carried out in the wire electrode mid-plane, perpendicularly to the wire and the collecting electrodes. The results show similarities and differences of the particle flow in the wire-cylinder type ESP for a negative and a positive DC voltage polarity.The collection efficiency was calculated from the fractional particle concentration. The fractional particle concentration was measured using the optical aerosol spectrometer. The results of the fractional collection efficiency confirmed the common view that the collection efficiency of fine particles in the ESP increases with increasing voltage and it is higher for negative voltage polarity and decreases when decreasing particle diameter.  相似文献   

7.
Lab-scale, two-stage electrostatic precipitation system comprising of precharging stage, in which PM2.5 particles are electrically charged, and collection stage, in which the charged particles are removed from the flowing gas by electric field, was investigated in this paper. Two types of electrostatic particle prechargers were compared with respect to the collection efficiency of the system: (1) co-flow precharger, in which ionic current was generated co-currently with the gas conveying the particles, and (2) counter-flow precharger, in which ionic current was generated oppositely to the flowing gas. In each case, the electrodes of precharger were supplied with DC or AC high-voltage in order to compare the effect of discharge mode on the collection efficiency of two-stage electrostatic precipitator. The collection stage was formed by two parallel-plate electrodes connected to DC high voltage source. Plate electrodes without discharge points (spikes) are corona-free electrodes, which prevent the collection stage from electrical discharges, and reduce the probability of back discharge ignition. The back discharge decreases collection efficiency of conventional electrostatic precipitators.It was concluded that the co-flow electrode configuration of the precharger, supplied with DC high voltage, has the highest total number collection efficiency for PM2.5 particles, higher than 95% and the mass collection efficiency larger than 99%. The counter-flow precharger provided only about 90% number collection efficiency of two-stage electrostatic precipitator. It was also shown that by AC electrode excitation, the collection efficiency of the system is lower than for DC supply. The two-stage electrostatic precipitators allowed obtaining higher fractional collection efficiency for PM2.5 particles than other conventional systems and can be recommended as highly effective devices for gas cleaning in power plants or cement industry.  相似文献   

8.
An analysis of the electrostatic gas cleaning fundamental phenomenon shows an essential influence of discharge electrode construction on the gas cleaning process efficiency.In the physical model tests there were used rigid discharge electrodes with corona emitting elements of various geometries. Different constructions of discharge electrode were tested in the aspect of discharge current uniform distribution on collecting electrode surfaces. Measurements of discharge current distribution has been carried out for discharge electrodes with different spike shapes and in different electric field geometry. The research aim was to determine the optimal discharge electrode construction ensuring high collection efficiency of fine particles. Collection efficiency measurements of selected fly ash samples (from coal fired boilers) were carried out on a laboratory testing bench in a horizontal electrostatic precipitator model.  相似文献   

9.
In this paper, a new electrostatic precipitator (ESP) with asymmetrical wire-to-cylinder configuration is investigated experimentally and numerically. The main objective is to evaluate the collection efficiency of high resistivity particles.The electrical measurements show that the corona discharge behavior is similar to that obtained in symmetrical wire-to-cylinder configuration. Results show that the collection efficiency can reach 95% in the case of negative corona discharge.In order to understand the particle trajectories inside the ESP, the experimental results are compared with numerical simulation by using a coupled model. Numerical results indicate that particles can be collected on the collecting electrode backside.  相似文献   

10.
Although improving electrostatic precipitator (ESP) collection of fine particles (micron and submicron sizes) remains of interest, it is not yet clear whether the turbulent flow patterns caused by the presence of electric field and charge in ESPs advance or deteriorate fine particle precipitation process. In this paper, results of the laser flow visualization and Particle Image Velocimetry (PIV) measurements of the particle flow velocity fields in a wire-to-plate type ESP model with seven wire electrodes are presented. Both experiments were carried out for negative and positive polarity of the wire electrodes. The laser flow visualization and PIV measurements clearly confirmed formation of the secondary flow (velocity of several tens of cm/s) in the ESP model, which interacts with the primary flow. The particle flow pattern changes caused by the strong interaction between the primary and secondary flows are more pronounced for higher operating voltages (higher electrohydrodynamic numbernehd) and lower primary flow velocities (lower Reynolds number Re). The particle flow patterns for the positive voltage polarity of the wire electrodes are more stable and regular than those for the negative voltage polarity due to the nonuniformity of the negative corona along the wire electrodes (tufts).  相似文献   

11.
We constructed a single-stage, laboratory-scale electrostatic precipitator (ESP) and evaluated its physical and microbial collection efficacies. Ground rice husk was examined as a representative model of airborne particles carrying microorganisms (bacteria, molds and yeasts). Physical and microbial collection efficacies were evaluated at different voltages applied to the negative discharge electrode without ozone generation. The best collection efficiencies were observed at an applied voltage of ?6.0 kV, resulting in collection efficiencies of over 90% for the physical sample and 99.95% for bacteria. No molds or yeasts in the ground rice husk passed through the ESP operating at ?6.0 kV applied voltage.  相似文献   

12.
Simultaneous measurements of the mass collection rates by plates and hoppers have been realized along a pilot ESP in an industrial environment, together with on-line current, voltage, opacity measurements; they have been associated with on-site measurements of particle concentration and resistivity, and with records of the operating conditions of the both boiler and the electrostatic precipitator. Using these measurements, it has been possible to reconstruct the detailed mass balance across the precipitator, under different operating conditions, depending on corona current and rapping sequences. It has been quantified that the best performances are obtained under slow rapping conditions and for current levels around the back-corona threshold. The detailed mass balance combined with size distribution of the fly ash may be very useful for the validation of theoretical models, in much more detail than through previously available published data. Continuous mass transfer from the collecting plates into the hoppers, independent on rapping shots, has been also put in evidence.  相似文献   

13.
Using electrostatic precipitators (ESPs) in filtration systems results in higher system energy efficiency than fiber-based filters, but particle re-entrainment could lower the collection efficiency of ESPs. This paper demonstrates a novel ESP that utilizes foam-covered collecting electrodes to reduce particle re-entrainment and enhance collection efficiency. Particles that settle down within the pores of the foam are less likely to re-enter the airflow. Results show that foam-covered ESPs have 99 percent collection efficiency. Parametric plots demonstrate the effects of the key design variables, such as corona voltage, repelling voltage, and free airflow velocity on collection efficiency.  相似文献   

14.
15.
This study presents the results of investigations of a hybrid electrostatic filtration system (HEFS), which combines an electrostatic precipitator (ESP) and a fibrous filter installed downstream of the ESP. The particles escaping from the ESP carry large amount of charge and this can increase the filtration efficiency of the fibrous filter. The filtration characteristics, including the efficiency, pressure drop and ozone generation, were investigated experimentally. The influence of system parameters, including the filter type, applied voltage, and distance between the ESP and fibrous filter on the overall efficiency were also studied. The measured results show that utilizing the non-high-efficient fibrous filter to remove the charged particle could provide a much higher efficiency without adding the pressure drop due to the electrostatic force. If the efficiency was similar, the ozone generated by HEFS was much lower than that of the single ESP. The results proved that filter efficiency increased with a higher applied voltage and higher initial mechanical filtration efficiency. The distance between the filter and ESP had no influence on the system filtration efficiency. The efficiency of filter in HEFS supplied with the positive voltage was slightly lower than for the negative voltage. In addition, the mathematical model was utilized to model the air filter efficiency in HEFS. The modeled and measured results agreed reasonably. Overall conclusion is that the HEFS could operate at a high efficiency with the lower applied voltage, ozone generation and pressure drop.  相似文献   

16.
A CFD model was developed to describe the particle laden gas flow through an ESP, particle charging and collection. The corona discharge was modeled using the open source software OpenFOAM to solve the Poison and charge conservation equations, and results were entered using user-defined field functions in the commercial CFD software STAR-CCM+. The gas flow, EHD flow, particle charging and dynamics were modeled using STAR-CCM+. The developed CFD model allows for direct solution of the drift and diffusional flux of gas ions. The influence of the various ESP dimensions, operating parameters and ash properties on the collection efficiency are reported.  相似文献   

17.
Over the past decade or so the health problems associated with the inhalation of sub micron particles from industrial processes has taken prominence and has lead to the stricter emission legislation, such as the US PM 2.5 approach. Generally most forms of control equipment readily handle and collect particles greater than 1 micron diameter, however, those less than 1 micron diameter are very much more difficult to collect.In the case of electrostatic precipitation, which involves both particle charging and migration under the influence of an electric field, the larger particles, generally greater than 1 micron are charged by collision with the ions and electrons present in the inter electrode area. It will be shown that the charge on these particles is proportional to the radius squared and its migration velocity proportional to the voltage squared, both reducing with particle size. The very small particles however, are charged by a diffusion processes and migrate under the influence of Brownian motion, which increases as the particle size decreases. The result of this is that a typical particle size/efficiency curve indicates a significant penetration window in the 0.8–0.2 micron diameter range, which coincides with the change from collision to diffusion charging of the particles.Because of this penetration window, should an existing precipitator operating under optimum electrical conditions, not comply with fine particle emission requirements, the conventional performance enhancement scenario, since the charging and precipitation operating conditions have been already optimised, would be to increase the precipitator's plate area, a very expensive solution. It will be shown, however, that the replacement of the conventional mains energisation system by an SMPS approach in an existing ESP will enhance the collection efficiency of particles, particularly in the penetration window, as a result of the increase in both operating field voltages and currents.The SMPS approach was applied to a 2 field ESP dealing predominately with sub micron fume, which the Client wished to enhance the performance to enable higher recycle rates, while still complying with his emission permitting. This was initially assessed using PALCPE? (Proactive Approach to Low-Cost Precipitator Enhancement), which indicated a significant reduction in the fine particle emissions was achievable by operation under SMPS Operation. An SMPS unit was subsequently fitted to the outlet field of this precipitator and the operating data will be examined in detail. With the outlet field under a mains rectification energisation system the overall emission was ~25 mg/Nm3, which after installation of the SMPS unit reduced to less than 15 mg/Nm3.  相似文献   

18.
姜学东  徐鹤  王昕 《中国物理 B》2014,(12):328-332
The charge quantity of small particulates such as PM2.5 plays a key role in the collection efficiency of an electrostatic precipitator(ESP). Under a single electrostatic voltage, it is difficult to charge and absorb small particulates. A new method of superimposing an alternative voltage on the electrostatic voltage is provided in this paper. Characteristics of small particulates are analyzed under alternative and electrostatic voltages. It is demonstrated that an alternative voltage can significantly improve the collection efficiency in three aspects: preventing anti-corona, increasing the charge quantity of small particulates, and increasing the median particulate size by electric agglomeration. In addition, practical usage with the superposition of alternative voltage is provided, and the results are in agreement with the theoretical analysis.  相似文献   

19.
A single-stage, single-wire vertical wet electrostatic precipitator was designed and operated in air–water droplets flow to investigate its performance. The efficiency was compared with a glass micro fiber filter and proposed semi-empirical efficiency model, which was in good accuracy while considering the vapor content. Effects of geometric parameters on efficiency under different charge conditions were discussed. Due to evaporation mechanism, the corona current decreases for high flow rates at the same applied voltage. Findings indicated while developing flow is created inside the ESP, there exists an optimum wire-to-flow inlet spacing that provides maximum droplet collection efficiency.  相似文献   

20.
Electrostatic precipitators (ESPs) with the wet membrane-based collecting electrode play an important role on the flue gas cleaning process. However, the mechanism researches on the excellent collection efficiency of the membrane-based ESPs are insufficient. This paper aims at characterizing the excellent collection efficiency of the ESPs in the aspect of the electrical characteristics. The discharge current density and distribution of the metal and wet membranes collecting electrode were measured using the boundary probe method under different conditions. The differences of the discharge current density and distribution between the wet membranes collecting electrode and the metal one were discussed in detail. In addition, the effects of applied voltage, distance between the electrodes and discharge electrode construction on the difference of the discharge current density between the wet membranes electrode and the metal one were also presented. The results show that the discharge current density is strongly increased by the wet membranes electrode, the increased discharge current density is the main reason for the excellent collection efficiency of the membrane-based WESPs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号