首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
就微分形式P(x,y,z)dx+Q(x,y,z)dy+R(x,y,z)dz为某函数u(x,y,z)的全微分的积分因子进行了探讨,提出了积分因子的必要条件,以及P(x,y,z),Q(x,y,z),R(x,y,z)是齐次函数时,方程Pdx+Qdy+Rdz=0具有积分因子的充分条件进行了初步探讨.  相似文献   

2.
<正> 微分式P(x,y)dx+Q(x,y)dy要成为某一函数全微分的条件有定理若P(x,y)与Q(x,y)在单连通区域D内有一阶连续偏导数,则P(x,y)dx+  相似文献   

3.
本文将一阶微分方程中的Bernoulli方程dy/dx=P(x)y+Q(x)yn推广到一类一阶非线性方程dy/dx=Q(x)f(y)+P(x)f(y)·∫1/f(y)dy(其中1/f(y)可积)并得到其初等解法.  相似文献   

4.
<正> 在数学分析中我们已经知道,假如 P(x,y),Q(x,y)是平面区域 G 上的连续函数,那么 P(x,y)dx+Q(x,y)dy是恰当全微分(即某一个二元函数的全微分)的充要条件是曲线积分integral from C P(x,y)dx+Q(x,y)dy与路线 C 无关(C 是区域 G 上的可求长曲线).如果 P(x,y),Q(x,y)并非连续,这时问题就变得复杂一些,因为托尔斯托夫证明了:即使在勒贝格意义下的第二型曲线积分  相似文献   

5.
对坐标的空间曲线积分的计算通常采用参数法或利用 Stokes公式 ,但对某些特定的空间曲线积分也可以将其转化为平面曲线的积分 ,因而也就简化了计算步骤。考虑如下曲线积分I =∫c P( x,y,z) dx +Q( x,y,z) dy +R( x,y,z) dz ( 1 )其中 c:F( x,y,z) =0z =φ( x,y) ,而 P,Q,R,F,φ对其各变元均具有一阶连续的偏导数。利用曲线积分的定义可以得到     I =∫c′{ P[x,y,φ( x,y) ]+R[x,y,φ( x,y) ]φ′x( x,y) } dx +{ Q[x,y,φ( x,y) ]+R[x,y,φ( x,y) ]φ′y( x,y) ]} dy ( 2 )其中 c′为 c在 xoy平面上的投影曲线 ,c′的方向与 c的…  相似文献   

6.
本文将一阶微分方程中的Bernoulli方程dy/dx=P(x)y Q(x)^n推广到一类一阶非线性方程dx/dx=Q(x)f(y) P(x)f(y).∫1/(f(y))dy(其中1/f(y)可积)并得到其初等解法。  相似文献   

7.
本文利用变量变换法与常数变易法给出Riccati型方程f'(y)dy/dx=P(x)f~2(y)+Q(x)f(y)+R(x)e~(∫Q(x)dx)的一个新的可积条件∫P(x)e~(∫Q(x)dx)dx=-1/2∫R(x)dx,同时给出该条件下方程的通解,并由此推得若干类Riccati方程的通解.  相似文献   

8.
设du=P(x,y)dx+Q(x,y)dy,称P(x,y)dx+Q(x,y)dy为函数u(x,y)的全微分,u(x,y)为P(x,y)dx+Q(x,x)dx的一个原函数。若已知P(x,y)dx+Q(x,y)dy为某一函数的全微分,如何求u(x,y)呢?今举例说明如下:例求全微分(x+y)dx+(x—y)dy的一个原函数。首先注意,在本题中P(x,y)一一函数的全微分,即存在原函数u(x,y),使有du(x,y)=(x+y)dx+(x-y)dy.解法一,简单路径法可选取或为积分路径,即这里取则解法二,微分方程法由前式解得。(x,s)一专x’+xv+。s),其中。,)为y的一个…  相似文献   

9.
全微分方程的不定积分解法及其证明   总被引:1,自引:0,他引:1  
0 引言一个一阶微分方程写成P( x,y) dx +Q( x,y) dy =0 ( 1 )形式后 ,如果它的左端恰好是某一个函数 u=u( x,y)的全微分 :du( x,y) =P( x,y) dx +Q( x,y) dy那么方程 ( 1 )就叫做全微分方程。这里 u x=P( x,y) ,   u y=Q( x,y)方程 ( 1 )就是 du( x,y) =0 ,其通解为 :u( x,y) =C  ( C为常数 )可见 ,解全微分方程的关键在于求原函数 u( x,y)。因此 ,本文将提供一种求原函数 u( x,y)的简捷方法 ,并给出证明。1 引入记号为了表述方便 ,先引入记号如下 :设 M( x,y)为一个含有变量 x,y项的二元函数 ,定义 :( 1 )“M( x,y)”表示 M(…  相似文献   

10.
邓耀华  罗定军 《数学学报》1964,14(1):119-127
<正> 按照文[1]的分类,我们研究其中的I类方程,它是最一般形式可化为dx/dy=-y+dx+lx~2+xy+ny~2=P(x,y),dy/dt=x=Q(x,y).当 d=0时文[1]已证明此方程不存在极限环,这时有限远奇点 O(0,0)为焦点,l+n>0时为稳定,l+n<0时为不稳定,当 n≠0 时还有另一奇点 N(0,1/n),为鞍点.为确定起见,以下均假定 l+n>0(l+n=0 时以原点为中心,由旋转向量场的理论可知加上 dx 项以后不产生极限环故不必讨论,l+n<0 时则将 y,t 改号即可化为 l+n>0的情况).由旋转向量场理论可知 d<0 而|d|甚小时在原点 O 附近产生不稳定极  相似文献   

11.
对平面第二型曲线积分∫LP(x,y)dx+Q(x,y)dy的计算进行归纳,给出计算平面第二型曲线积分的解题思路与计算技巧.  相似文献   

12.
纠正《高等数学》(同济四版)的一个错误   总被引:1,自引:0,他引:1  
孙瑞德 《大学数学》2001,17(3):107-108
《高等数学》[1]中关于两类曲线积分关系的推导是错误的 .关于两类曲线积分关系有一个熟知的公式 ,即∫LP(x,y) dx+Q(x,y) dy=∫L [P(x,y) cosα+Q(x,y) cosβ]ds,(1 )其中 cosα,cosβ为有向弧段 L的切向量的方向余弦 .但《高等数学》中关于 (1 )的推导是错误的 .它给出曲线弧 L的参数方程x=φ(t) ,  y=ψ(t) (2 )(注意从 (2 )中体现不出弧的方向 ) ,它又假定有向弧起点和终点的参数分别为 α和 β,然后下式成立∫LP(x,y) dx+Q(x,y) dy=∫βα {P[φ(t) ,ψ(t) ]φ′(t) +Q[φ(t) ,ψ(t) ]ψ′(t) }dt. (3)它又设有向弧切向量为t={…  相似文献   

13.
一阶常微分方程有形如μ(axα+bxsyl+cyβ)积分因子的充要条件   总被引:10,自引:1,他引:9  
陈明玉 《大学数学》2005,21(1):130-133
讨论了一阶常微分方程M(x,y)dx+N(x,y)dy=0 的积分因子问题,给出了一阶常微分方程有形如μ(axα+bxsyl+cyβ)的积分因子的一个充分必要条件.推广了相关文献的结果,从而丰富了常微分方程的解法.  相似文献   

14.
一阶线性非齐次方程dy/dx p(x)y=Q(x)(1)所对应的线性齐次方程为dy/dx p(x)y=0 (2)方程(2)的通解为y=ce-∫p(x)dx(c是任意常数).常数交易法的要点是把任意常数c变为c(x),然后求方程(1)的通解.这一点初学者不易理解,常常会问“怎么想到把c变易为c(x)”.为了解决这个疑难问题,我们介绍以下分析方法.  相似文献   

15.
一类Riccati型方程的通积分   总被引:21,自引:2,他引:19  
给出 Riccati型方程 :f′(y) dydx=p(x) f 2 (y) +Q(x) f (y) +R(x) e∫Q( x) dx在条件 p(x) e∫Q( x) dx=21 ∫R(x) dx′下的通积分 ,由此 ,得到若干类 Riccati方程的通积分  相似文献   

16.
寻找方程:p(x、y)dx Q(x、y)dy=0(1)的积分因子没有简单的一般规律可循.本文给出某些特殊情况下寻求积分因子的几种方法.方法Ⅰ顺藤摸瓜法.如果Pdx Qdy中有一部分P_1dx Q_1dy=du,且(p-p_2)dx (Q-Q_1)dy=0有积分因子f(u),则显然f(u)也是pdx Qdy=0的积分因子,请看下例:  相似文献   

17.
利用积分因子求解微分方程P(x,y)dx+Q(x,y)dy=0 (1)是一种有效的方法,但是求积分因子却不容易,对于简单的微分方程,可以通过观察来确定积分因子,但对于较复杂的微分方程,往往不容易直接求得它的积分因子.如果把方程(1)左端分组,找出每组的积分因子,或把方程的左端化为几个全微分的和,问题就可简单化.  相似文献   

18.
《高等数学研究》2007,10(3):55-55
一、填空题(共12小题,每小题3分,满分36分)1·limy→∞y→∞(1 x1y)x=.(1)2·函数z=z(x,y)由方程exz sinxy=0确定,则zy=(-coxs2exxyz)3·设函数u=lnx2 y2 z2,则它在点M0(1,-1,1)处的方向导数的最大值为.(33)4·设函数f(x,y)=2x2 ax xy2 2y在点(1,-1)处取得极值,则常数a=.(-5)5·空间曲线y2=2x,z2=1-x在点(12,1,22)处的切线方程为.(x-121=y 1-1=z--1222)6·改变二次积分的次序:I=∫02dx∫02x-x2f(x,y)dy=.(∫01dy∫11 -11--yy22f(x,y)dx)7·设平面曲线L为下半圆周y=-1-x2,则∫L(x2 y2)ds=.(π)8·设∑为曲面z=x2 y2在0≤z≤1的部分,则…  相似文献   

19.
有时将一元函数的积分问题转化为二元函数的二重积分问题 ,会给解题带来方便 .本文通过几个范例说明利用二重积分证明积分不等式的方法 .例 1 设函数 f (x)与 g(x)在 [a,b]上连续 ,证明 Cauchy-Schwarz积分不等式(∫baf (x) g(x) dx) 2≤∫baf 2 (x) dx∫bag2 (x) dx  证明 记积分区域 D =[a,b]× [a,b],利用定积分与积分变量符号无关的性质等 ,有(∫baf (x) g(x) dx) 2 =∫baf (x) g(x) dx∫baf (y) g(y) dy = Df (x) g(x) f (y) g(y) dxdy≤ D12 [f2 (x) g2 (y) f2 (y) g2 (x) ]dxdy=12 ∫baf 2 (x) dx∫bag2 (y) dy 12 ∫baf …  相似文献   

20.
+∞∫-∞e-x22dx=2π(1)式(1)是概率论中常用的积分,常见的证法是利用了极坐标变换[1],或利用Γ函数的性质[2].笔者给出一种利用旋转体体积公式的新证法.设I=+∞∫-∞12πe-x22dx,则(1)式等价于I=1.由于I2=(+∞∫-∞12πe-x22dx)2=+∞∫-∞12πe-x22dx+∞∫-∞12πe-y22dy=+∞∫-∞∫+∞-∞12πe-x2+2y2dxdy被积函数z=f(x,y)=12πe-x22+y2,-∞相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号