首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We theoretically examined the slow light effect in a one-sided optomechanical system with a two-level atom placed inside it. When the cavity without atoms is driven by the input field, an optomechanically induced transparency (OMIT) window appears in the transmission spectrum due to destructive interference. We observed that due to the existence of atoms, the OMIT window shifted to normal-mode splitting and steeper Fano shapes. Our results exhibit that coupling strength has a very prominent effect on the transmission part. The Larger the coupling strength, the larger will be the effect on the transmission. This leads to rapid positive phase dispersion in the transmitted field, gives rise to the corresponding slow light effect.  相似文献   

2.
The optical properties of a caesium atomic beam driven on a resonant hyperfine transition in the D2 line were studied as a function of the probe laser frequency. Using a third off-resonant laser system, a heterodyne interferometer allowed simultaneous absorption and phase shift measurements of either the probe or the coupling laser. The signal features of the probe and coupling laser transmitted intensities showed strong differences in the vicinity of the hyperfine transitions excited by the probe laser. Regular absorption signals and electromagnetically induced transparency were found in either transmitted intensities. Furthermore, light induced birefringence of the probe laser was measured.  相似文献   

3.
Comparison of the UV-vis absorption spectra of CdSe quantum dots (QDs) capped with various mercaptocarboxylic acid capping ligands reveals that only 4-mercaptobenzoic acid (MBzA) capping ligands lower the apparent optical band gap. We propose that the delocalization of the excitons in the CdSe QDs is extended onto the ligands via electronic coupling to the π system of the 4-mercaptobenzoic acid molecules through the Cd-S bond. Furthermore, we demonstrate that the electronic coupling between the QDs and the (MBzA) thiol ligands is influenced by the strength of the Cd-S bond that can be changed by protonating the S atom.  相似文献   

4.
Abstract— A sensitive optical method to monitor local environmental changes in biological systems is described. It utilizes the high optical amplification typical to any dye laser cavity by installing the investigated system inside the laser resonator. Very small changes in the optical density of a probe dye can be detected and related to the dye's state of aggregation or in another demonstration to its adsorption on differently charged micelles and liposomes. When further developed, this technique can prove to be a very sensitive method to measure membrane potentials, changes in molecular environment and molecular dynamics. The pulsed laser used is advantageous to a continuous source used in fluorescence and absorption methods reducing photodynamic damage.  相似文献   

5.
以重复单元结构不同的3种线性脂环族聚酰胺(LATPA)材料为研究对象,通过核磁共振谱、红外光谱、热分析、X射线衍射等技术,研究了链结构单元的侧基、端基对材料聚集态结构的影响,并对比研究了不同聚集态结构材料的宏观力学性能和光学透明性差异,建立了链结构、聚集态结构与力学性能、光学性能的关系.研究发现,侧基带来的大空间位阻降...  相似文献   

6.
Transparent thin films of calcium‐ion‐incorporated polymer composites were synthesized with calcium carbonate (CaCO3) and polymers such as poly(acrylic acid) (PAA), poly(ethylene glycol) (PEG), and methylcellulose. The homogeneous distribution of Ca2+ in the composite films was observed because of the high concentration of COO? groups along the PAA backbone for the complexation of Ca2+ ions. The optical transparency of the composites depends on the weight percentages of the three polymers and the molar concentration of CaCO3 in the composites. Maximum transparency was obtained for a composite film with a PAA/CaCO3 ratio of 9:1. The results indicated that methylcellulose improved the film‐forming capabilities and that PEG improved the transparency of the composites. All polymer complexes were characterized with X‐ray diffraction, fourier transfer infrared spectroscopy, scanning electron microscopy, energy‐dispersive X‐ray spectroscopy, dynamic mechanical analysis, and optical transparency measurements. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 4459–4465, 2004  相似文献   

7.
Some nanoparticles, such as quantum dots (QDs), are widely used in the biological and biomedical fields due to their unique optical properties. However, little is currently known about the interaction between these nanoparticles and biomolecules. Herein, we systemically investigated the interaction between chaperonin GroEL and water‐soluble CdTe QDs based on fluorescence correlation spectroscopy (FCS), capillary electrophoresis, and fluorescence spectrometry. We observed that some water‐soluble CdTe QDs were able to enter the inner cavity of GroEL and formed an inclusion complex after the activation of chaperonin GroEL with ATP. The inclusion of GroEL was size‐selective to QDs and only small QDs were able to enter the inner cavity. The inclusion could suppress the fluorescence quenching of the QDs. Meanwhile, we evaluated the association constant between chaperonin GroEL and CdTe QDs by FCS. Our results further demonstrated that FCS was a very useful tool for study of the interaction of QDs and biomolecules.  相似文献   

8.
Liquid crystal elastomers can be macroscopically ordered with respect to the director by applying a mechanical field similar to electric/magnetic field effects of low molar mass liquid crystals. Introducing network anisotropy a priori by the synthesis, uniformly aligned nematic or smectic elastomers are available without external mechanical field. These LSCE's combine optical properties of single crystals with entropy elasticity of elastomers. Due to uniform director orientation without defects, the LSCE's exhibit excellent transparency which makes them applicable for optical elements. Non-linear optical properties can be easily optimized by attaching suitable I.c.-moieties to the polymer network. On the other hand, due to the rubber elasticity of the LSCE's, electromechanical effects can be observed, e. g. piezoelectricity of chiral smectic C-LSCE's.  相似文献   

9.
The optical properties of a caesium atomic beam driven on a resonant hyperfine transition in the D(2) line were studied as a function of the probe laser frequency. Using a third off-resonant laser system, a heterodyne interferometer allowed simultaneous absorption and phase shift measurements of either the probe or the coupling laser. The signal features of the probe and coupling laser transmitted intensities showed strong differences in the vicinity of the hyperfine transitions excited by the probe laser. Regular absorption signals and electromagnetically induced transparency were found in either transmitted intensities. Furthermore, light induced birefringence of the probe laser was measured.  相似文献   

10.
We present a general review of different microresonator structures and how they can be used in future device applications in modern analytical methods by tailoring the optical properties of single quantum emitters. The main emphasis is on the tunable λ/2-Fabry–Perot-type microresonator which we used to obtain the results presented in this article. By varying the mirror distance the local mode structure of the electromagnetic field is altered and thus the radiative coupling of fluorescent single quantum emitters embedded inside the resonator to that field is changed, too. As a result a modification of the optical properties of these quantum emitters can be observed. We present experimental as well as theoretical results illustrating this effect. Furthermore, the developed resonator can be used to determine the longitudinal position of embedded emitters with an accuracy of λ/60 by analyzing the excitation patterns of nano-sized fluorescent polymer spheres after excitation with a radially polarized doughnut mode laser beam. Finally, we will apply this resonator to a biological system and demonstrate the modification of Förster resonant energy transfer (FRET) efficiency by inhibiting the excited state energy transfer from the donor to the acceptor chromophore of a single DsRed protein.
Figure
Effect of a microresonator on single quantum emitters (from left to right): PI molecule or DsRed protein invesitigated in a microresonator with resulting exciation patterns of the PI molecule after exciation with a radially polarized laser beam or the cavity-controlled emisison spectrum of DSRed in comparison with its free space spectrum (hatched). The background shows the Newton rings of the microrsonator.  相似文献   

11.
This study examines the electronic coupling between quantum dots (QDs) and molecules on their surfaces as a function of the modality of their interaction. As a probe, the energy transfer (ET) between CdSe QDs and phthalocyanines (Pcs) was monitored and evaluated with regard to the functionalization of the axial phthalocyanine ligand, bulkiness of the functional group bridging the QD donor and Pc acceptor, and the number of the functionalized axial ligands. New silicon PCs and their conjugates with CdSe QDs were synthesized. The ET efficiency and kinetics were studied by steady state and femtosecond time-resolved absorption spectroscopy. We observed a decrease in ET efficiency with the increase in functional group bulkiness, which could be explained by increasing steric hindrance between the ET pair. In addition, a higher ET efficiency was observed for amino and thiol functionalized Pcs compared to Pcs without functional group on the axial alkyl chain.  相似文献   

12.
This study examines the electronic coupling between quantum dots (QDs) and molecules on their surfaces as a function of the modality of their interaction. As a probe, the energy transfer (ET) between CdSe QDs and phthalocyanines (Pcs) was monitored and evaluated with regard to the functionalization of the axial phthalocyanine ligand, bulkiness of the functional group bridging the QD donor and Pc acceptor, and the number of the functionalized axial ligands. New silicon PCs and their conjugates with CdSe QDs were synthesized. The ET efficiency and kinetics were studied by steady state and femtosecond time-resolved absorption spectroscopy. We observed a decrease in ET efficiency with the increase in functional group bulkiness, which could be explained by increasing steric hindrance between the ET pair. In addition, a higher ET efficiency was observed for amino and thiol functionalized Pcs compared to Pcs without functional group on the axial alkyl chain.  相似文献   

13.
We have shown that electromagnetically induced transparency can be achieved by control-probe interferometry using two delayed phase-locked ultrashort pulses. Two vibrational wavepackets on the excited state, excited by two delayed phase-locked ultrashort pulses, interfere constructively or destructively leading to enhancement or suppression of absorption to a selective set of vibrational levels. Depending on the phase difference and the delay between the pulses with same carrier frequency, one can design different transparency windows between absorption peaks at consecutive even(odd) vibrational levels by eliminating absorption at odd(even) vibrational levels. We have shown that by switching the phase difference of two delayed femtosecond pulses, one can switch to complete elimination of absorption from enhanced absorption to a particular set of vibrational levels in the excited state. Thus, switching of transparency through window between odd vibrational levels to that between even vibrational levels is possible. By properly choosing the temporal width and the carrier frequency of the pulses, lossless transmission of complete or bands of frequencies of the pulses can be achieved through these transparency windows. Hence, designing of single- or multi-mode transparency windows in NaH molecule is feasible by control-probe quantum interferometry.  相似文献   

14.
The utilization of semiconductor quantum dots (QDs) as optical labels for biosensing and biorecognition has made substantial progress. However, the development of a suitable QD‐based luminescent probe that is capable of detecting individual reactive oxygen species (ROS) represents a great challenge, mainly because the fluorescence of QDs is quenched by a wide variety of ROS. To overcome this limitation, a novel QD‐based turn‐on luminescent probe for the specific detection of .OH has been designed, and its application in monitoring the endogenous release of .OH species in living cells is demonstrated. Metal citrate complexes on the surfaces of the QDs can act as electron donors, injecting electrons into the LUMO of the QDs, while .OH can inject holes into the HOMO of the QDs. Accordingly, electron–hole pairs are produced, which could emit strong luminescence by electron–hole recombination. Importantly, this luminescent probe does not respond to other ROS.  相似文献   

15.
A stable, low gas-flow torch has been developed for use with a helium microwave induced plasma (MIP). A toroidal plasma with central analyte introduction is obtained by the addition of a tantalum coupling probe injector tube. This injector penetrates through 100% of the total cavity depth and aids in the efficiency of power transfer to the cavity, in plasma initiation, and in circumventing the effects of a lack of homogeneity in the microwave field on analyte distribution in the plasma. The tangential helium flow was 41/min and the microwave power was 60 W.Presented in part at the 1989 European Winter Conference on Plasma Spectrochemistry, Reutte, Austria  相似文献   

16.
In this paper, we investigate nonequilibrium temperatures in a two-state system driven to a nonequilibrium steady state by the action of an oscillatory field. The nonequilibrium temperature is determined by coupling a small cavity or probe to the nonequilibrium system and studying the fluctuating noise in the cavity, as has been proposed in the context of glassy systems. We show the presence of resonant effects in the nonequilibrium temperature and discuss the existence of a constitutive steady-state equation in such nonequilibrium conditions. We propose this simple model as an excellent system to carry out experimental measurements of nonequilibrium temperatures. This may help to better understand the physical meaning of such an elusive concept.  相似文献   

17.
A flow cytometric detecting technology based on quantum dots (QDs)-encoded beads has been described. Using this technology, several QDs-encoded beads with different code were identified effectively, and the target molecule (DNA sequence) in solution was also detected accurately by coupling to its complementary sequence probed on QDs-encoded beads through DNA hybridization assay. The resolution of this technology for encoded beads is resulted from two longer wavelength fluorescence identification signals (yellow and red fluorescent signals of QDs), and the third shorter wavelength fluorescence signal (green reporting signal of fluorescein isothiocyanate (FITC)) for the determination of reaction between probe and target. In experiment, because of QDs’ unique optical character, only one excitation light source was needed to excite the QDs and probe dye FITC synchronously comparing with other flow cytometric assay technology. The results show that this technology has present excellent repeatability and good accuracy. It will become a promising multiple assay platform in various application fields after further improvement.  相似文献   

18.
Chen ML  Liu JW  Hu B  Chen ML  Wang JH 《The Analyst》2011,136(20):4277-4283
It is difficult to achieve fluorescent graphene-quantum dots (QDs) conjugation because graphene quenches the fluorescence of the QDs. In the present study, the conjugation of graphene (reduced graphene oxide, RGO) with QDs via a bridge of bovine serum albumin (BSA) provides a novel highly fluorescent nano probe for the first time. BSA capped QDs are firmly grafted onto polyethylenimine (PEI)/poly(sodium 4-styrenesulfonate) (PSS) coated RGO (graphene-QDs) via electrostatic layer by layer assembly. The strong luminescence of the graphene-QDs provides a potential for non-invasive optical in vitro imaging. The graphene-QDs are used for in vitro imaging of live human carcinoma (Hela) cells. Graphene-QDs could be readily up-taken by Hela cells in the absence of specific targeting molecules, e.g., antibodies or folic acid, and no in vitro cytotoxicity is observed at 360 μg mL(-1) of the graphene-QDs. The results for the imaging of live cells indicated that the cell-penetrating graphene-QDs could be a promising nano probe for intracellular imaging and therapeutic applications.  相似文献   

19.
Strong luminescence CdS quantum dots (QDs) have been prepared and modified with l-cysteine by a facile seeds-assistant technique in water. They are water-soluble and highly stable in aqueous solution. CdS QDs evaluated as a luminescence probe for heavy and transition metal (HTM) ions in aqueous solution was systematically studied. Five HTM ions such as silver(I) ion, copper(II) ion, mercury(II) ion, cobalt(II) ion, and nickel(II) ion significantly influence the photophysics of the emission from the functionalized CdS QDs. Experiment results showed that the fluorescence emission from CdS QDs was enhanced significantly by silver ion without any spectral shift, while several other bivalent HTM ions, such as Hg(2+), Cu(2+), Co(2+), and Ni(2+), exhibited effective optical quenching effect on QDs. Moreover, an obvious red-shift of emission band was observed in the quenching of CdS QDs for Hg(2+) and Cu(2+) ions. Under the optimal conditions, the response was linearly proportional to the concentration of Ag(+) ion ranging from 1.25 x 10(-7) to 5.0 x 10(-6)molL(-1) with a detection limit of 2.0 x 10(-8)molL(-1). The concentration dependence of the quenching effect on functionalized QDs for the other four HTM ions could be well described by typical Stern-Volmer equation, with the linear response of CdS QDs emission proportional to the concentration ranging from 1.50 x 10(-8) to 7.50 x 10(-7)molL(-1) for Hg(2+) ion, 3.0 x 10(-7) to 1.0 x 10(-5)molL(-1) for Ni(2+) ion, 4.59 x 10(-8) to 2.295 x 10(-6)molL(-1) for Cu(2+) ion, and 1.20 x 10(-7) to 6.0 x 10(-6)molL(-1) Co(2+) ion, respectively. Based on the distinct optical properties of CdS QDs system with the five HTM ions, and the relatively wide linear range and rapid response to HTM ions, CdS QDs can be developed as a potential identified luminescence probe for familiar HTM ions detection in aqueous solution.  相似文献   

20.
The absorption and photoluminescence (PL) properties of silicon quantum dots (QDs) are greatly influenced by their size and surface chemistry. Herein, we examined the optical properties of three Si QDs with increasing σ–π conjugation length: octyl‐, (trimethylsilyl)vinyl‐, and 2‐phenylvinyl‐capped Si QDs. The PL photon energy obtained from as‐prepared samples decreased by 0.1–0.3 eV, while the PL excitation (PLE) extended from 360 nm (octyl‐capped Si QDs) to 400 nm (2‐phenylvinyl‐capped Si QDs). A vibrational PL feature was observed in all samples with an energy separation of about 0.192±0.013 eV, which was explained based on electron–phonon coupling. After soft oxidization through drying, all samples showed blue PL with maxima at approximately 410 nm. A similar high‐energy peak was observed with the bare Si QD sample. The changes in the optical properties of Si QDs were mainly explained by the formation of additional states arising from the strong σ–π conjugation and QD oxidation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号