首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
A series of experiments evaluated the effects of broadband noise (ipsilateral) on wave V of the brainstem auditory evoked response (BAER) elicited by tone bursts or clicks in the presence of high-pass masking noise. Experiment 1 used 1000- and 4000-Hz, 60-dB nHL tone bursts in the presence of broadband noise. With increasing noise level, wave V latency shift was greater for the 1000-Hz tone bursts, while amplitude decrements were similar for both tone-burst frequencies. Experiment 2 varied high-pass masker cutoff frequency and the level of subtotal masking in the presence of 50-dB nHL clicks. The effects of subtotal masking on wave V (increase in latency and decrease in amplitude) increased with increasing derived-band frequency. Experiment 3 covaried high-pass masker cutoff frequency and subtotal masking level for 1000- and 4000-Hz tone-burst stimuli. The effect of subtotal masking on wave V latency was reduced for both tone-burst frequencies when the response-generating region of the cochlear partition was limited by high-pass maskers. The results of these three experiments suggest that most of the wave V latency shift associated with increasing levels of broadband noise is mediated by a place mechanism when the stimulus is a moderate intensity (60 dB nHL), low-frequency (1000 Hz) tone burst. However, the interpretation of the latency shifts produced by broadband noise for 4000-Hz tone-burst stimuli is made more complex by multiple technical factors discussed herein.  相似文献   

2.
The effects of forward masker duration on psychophysical measures of frequency selectivity were investigated in two experiments. In both experiments, masker duration was 50 or 400 ms, signal duration was 20 ms, and there was no delay between masker offset and signal onset. In the first experiment, growth-of-masking functions were measured for a masker whose frequency was below, at, or above the 1000-Hz signal frequency. From those data, input filter patterns (IFPs) were plotted for masker levels from 40-90 dB SPL. In the second experiment, masking patterns (MPs) were measured for a 1000-Hz masker presented at 50, 70, and 90 dB SPL. Both measures of frequency selectivity (IFPs and MPs) indicate that frequency selectivity is greater for the 400-ms masker. These data suggest that there may be a sharpening of frequency selectivity with time at a stage prior to the adaptation observed in forward masking.  相似文献   

3.
4.
Masking sounds can be continuously present, gated simultaneously with the signal, or gated somewhat prior to the signal. This continuum of relative onset times was explored using waveforms of the sort commonly employed in studies of comodulation masking release (CMR). There was a 50-Hz masker band centered on the 1250-Hz tonal signal, and four 50-Hz flanker bands centered at 850, 1050, 1450, and 1650 Hz. In some conditions, all four flanker bands had the same temporal envelope, and the masker band either had that same envelope (correlated presentations) or a different envelope (uncorrelated presentations). In other conditions, all five bands had different temporal envelopes (all-uncorrelated presentations). The masker band and/or the four flanker bands were either gated nearly simultaneously with the signal (burst conditions) or were gated prior to the signal by a duration that was systematically varied (fringed conditions). The eight listeners could be partitioned into three groups on the basis of their response to these fringing manipulations. Two listeners (the large fringers) showed a gradual improvement in detectability with increasing fringe duration (called a temporal decline of masking), while three others (the small fringers) showed little improvement in detectability. For the remaining three subjects, there was evidence of a "learning" effect that changed them from large fringers to small fringers over a 10-week period of listening. When present, the temporal decline of masking was greater for the correlated than for the uncorrelated comodulation condition; as a consequence, the difference in detectability between them (the comodulation masking release or CMR) increased with fringe duration. By fringing the masker and flanker bands separately and in combination, it was revealed that the temporal declines of masking were primarily attributable to the fringing of the flanker bands. In contrast, large CMRs required long fringes on both the masker and flanker bands. The above results were obtained with 50-ms signals, but generally similar data were obtained with a signal duration of 240 ms. The difficulties raised for experimentalists and theorists by such long-term practice effects are discussed.  相似文献   

5.
Release from masking caused by envelope fluctuations   总被引:1,自引:0,他引:1  
This paper examines how short-term energy fluctuations in a masker affect the thresholds for tones at frequencies above those of the masker. Two equally intense tones at 1060 and 1075 Hz produce up to 25 dB less masking than does a 1075-Hz tone set to the overall level of the two-tone complex. At wider frequency separations, two-tone complexes also produce less masking than the pure tone. These results indicate that envelope fluctuations in a masker, whose spectrum is confined to a single critical band, may result in release from masking. The release from masking probably is related to the comodulation masking release reported by Hall et al. [J. Acoust. Soc. Am. 76, 50-56 (1984b)] for modulated-noise maskers with bandwidths greater than one critical band. Further measurements with maskers, whose intensity level in the critical band around 1 kHz was 90 dB SPL, show similar masking by a pure tone and a 625- to 1075-Hz bandpass noise, but less masking by narrow-band noises. These results are inconsistent with a simple frequency selective energy-detector model and indicate that the auditory system can use periods of low masker energy as brief as a few ms to enhance detection of a tone. The results also imply that the upward spread of excitation is best represented by masking patterns for noises with bandwidths of several critical bands.  相似文献   

6.
Previous studies have shown that threshold for a signal in tone-on-tone simultaneous masking is sometimes lower when the masker is continuous than when it is gated. Threshold may also decline as signal onset is delayed relative to the onset of a longer duration masker, though it may increase again near masker offset. In the present study, the level of a 1250-Hz sinusoidal masker was found which would just mask a 20-ms, 1000-Hz sinusoid presented at 10-dB sensation level (SL). Masker duration was 20 or 400 ms; in the latter case, the signal was presented in one of three temporal positions within the masker. The level of the 1250-Hz masker necessary to mask the signal was reduced, sometimes by as much as 20-25 dB, by a 20-ms, 500-Hz sinusoid (transient masker) presented at the times when the signal might occur, but at a level 30 dB below that at which it would mask the 10-dB SL signal. This suggests that, in the earlier studies, at least some of the elevation in threshold in the presence of a short-duration masker or at the beginning (or end) of a longer duration masker may have been due to the transient responses to the masker affecting detection of the signal, but not necessarily masking the signal in terms of excitation in the signal "channel."  相似文献   

7.
These experiments on across-channel masking (ACM) and comodulation masking release (CMR) were designed to extend the work of Grose and Hall [J. Acoust. Soc. Am. 85, 1276-1284 (1989)] on CMR. They investigated the effect of the temporal position of a brief 700-Hz signal relative to the modulation cycle of a 700-Hz masker 100% sinusoidally amplitude modulated (SAM) at a 10-Hz rate, which was either presented alone (reference masker) or formed part of a masker consisting of the 3rd to 11th harmonics of a 100-Hz fundamental. In the harmonic maskers, each harmonic was either SAM with the same 10-Hz modulator phase (comodulated masker) or with a shift in modulator phase of 90 degrees for each successive harmonic (phase-incoherent masker). When the signal was presented at the dips of the envelope of the 700-Hz component, the comodulated masker gave lower thresholds than the reference masker, while the phase-incoherent masker gave higher thresholds, i.e., a CMR was observed. No CMR was found when the signal was presented at the peaks of the envelope. In experiment 1, we replicated the experiment of Grose and Hall, but with an additional condition in which the 600- and 800-Hz components were removed from the masker, in order to investigate the role of within-channel masking effects. The results were similar to those of Grose and Hall. In experiment 2, the signal was added at the peaks of the envelope of the 700-Hz component, but in antiphase to the carrier of that component and at a level chosen to transform the peaks into dips. No CMR was found. Rather, performance was worse for both the comodulated and phase-incoherent maskers than for the reference masker. This was true even when the flanking components in the maskers were all remote in frequency from 700 Hz. In experiment 3, the masker components were all 50% SAM and the signal was added in antiphase at a dip of the envelope of the 700-Hz component, thus making the dip deeper. Performance was worse for the phase-incoherent than for the reference masker and was worse still for the comodulated masker. The results of all three experiments indicate strong ACM effects. CMR was found only when the signal was placed in the dips of the masker envelope and when it produced an increase in level relative to that in adjacent bands.  相似文献   

8.
The masking level difference (MLD) for a narrowband noise masker is associated with marked individual differences. This pair of studies examines factors that might account for these individual differences. Experiment 1 estimated the MLD for a 50 Hz wide band of masking noise centered at 500 or 2000 Hz, gated on for 400 ms. Tonal signals were either brief (15 ms) or long (200 ms), and brief signals were coincident with either a dip or peak in the masker envelope. Experiment 2 estimated the MLD for both signal and masker consisting of a 50 Hz wide bandpass noise centered on 500 Hz. Signals were generated to provide only interaural phase cues, only interaural level cues, or both. The pattern of individual differences was dominated by variability in NoSpi thresholds, and NoSpi thresholds were highly correlated across all conditions. Results suggest that the individual differences observed in Experiment 1 were not primarily driven by differences in the use of binaural fine structure cues or in binaural temporal resolution. The range of thresholds obtained for a brief NoSpi tonal signal at 500 Hz was consistent with a model based on normalized interaural correlation. This model was not consistent for analogous conditions at 2000 Hz.  相似文献   

9.
These experiments examine how comodulation masking release (CMR) varies with masker bandwidth, modulator bandwidth, and signal duration. In experiment 1, thresholds were measured for a 400-ms, 2000-Hz signal masked by continuous noise varying in bandwidth from 50-3200 Hz in 1-oct steps. In one condition, using random noise maskers, thresholds increased with increasing bandwidth up to 400 Hz and then remained approximately constant. In another set of conditions, the masker was multiplied (amplitude modulated) by a low-pass noise (bandwidth varied from 12.5-400 Hz in 1-oct steps). This produced correlated envelope fluctuations across frequency. Thresholds were generally lower than for random noise maskers with the same bandwidth. For maskers less than one critical band wide, the release from masking was largest (about 5 dB) for maskers with low rates of modulation (12.5-Hz-wide low-pass modulator). It is argued that this release from masking is not a "true" CMR but results from a within-channel cue. For broadband maskers (greater than 400 Hz), the release from masking increased with increasing masker bandwidth and decreasing modulator bandwidth, reaching an asymptote of 12 dB for a masker bandwidth of 800 Hz and a modulator bandwidth of 50 Hz. Most of this release from masking can be attributed to a CMR. In experiment 2, the modulator bandwidth was fixed at 12.5 Hz and the signal duration was varied. For masker bandwidths greater than 400 Hz, the CMR decreased from 12 to 5 dB as the signal duration was decreased from 400 to 25 ms.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
This study examined whether increasing the similarity between informational maskers and signals would increase the amount of masking obtained in a nonspeech pattern identification task. The signals were contiguous sequences of pure-tone bursts arranged in six narrow-band spectro-temporal patterns. The informational maskers were sequences of multitone bursts played synchronously with the signal tones. The listener's task was to identify the patterns in a 1-interval 6-alternative forced-choice procedure. Three types of multitone maskers were generated according to different randomization rules. For the least signal-like informational masker, the components in each multitone burst were chosen at random within the frequency range of 200-6500 Hz, excluding a "protected region" around the signal frequencies. For the intermediate masker, the frequency components in the first burst were chosen quasirandomly, but the components in successive bursts were constrained to fall in narrow frequency bands around the frequencies of the components in the initial burst. Within the narrow bands the frequencies were randomized. This masker was considered to be more similar to the signal patterns because it consisted of a set of narrow-band sequences any one of which might be mistaken for a signal pattern. The most signal-like masker was similar to the intermediate masker in that it consisted of a set of synchronously played narrow-band sequences, but the variation in frequency within each sequence was sinusoidal, completing roughly one period in a sequence. This masker consisted of discernible patterns but not patterns that were part of the set of signals. In addition, masking produced by Gaussian noise bursts--thought to produce primarily peripherally based "energetic masking"--was measured and compared to the informational masking results. For the three informational maskers, more masking was produced by the maskers comprised of narrow-band sequences than for the masker in which the frequencies were not constrained to narrow bands. Also, the slopes of the performance-level functions for the three informational maskers were much shallower than for the Gaussian noise masker or for no masker. The findings provided qualified support for the hypothesis that increasing the similarity between signals and maskers, or parts of the maskers, causes greater informational masking. However, it is also possible that the greater masking was a consequence of increasing the number of perceptual "streams" that had to be evaluated by the listener.  相似文献   

11.
The present study sought to clarify the role of non-simultaneous masking in the binaural masking level difference for maskers that fluctuate in level. In the first experiment the signal was a brief 500-Hz tone, and the masker was a bandpass noise (100-2000 Hz), with the initial and final 200-ms bursts presented at 40-dB spectrum level and the inter-burst gap presented at 20-dB spectrum level. Temporal windows were fitted to thresholds measured for a range of gap durations and signal positions within the gap. In the second experiment, individual differences in out of phase (NoSπ) thresholds were compared for a brief signal in a gapped bandpass masker, a brief signal in a steady bandpass masker, and a long signal in a narrowband (50-Hz-wide) noise masker. The third experiment measured brief tone detection thresholds in forward, simultaneous, and backward masking conditions for a 50- and for a 1900-Hz-wide noise masker centered on the 500-Hz signal frequency. Results are consistent with comparable temporal resolution in the in phase (NoSo) and NoSπ conditions and no effect of temporal resolution on individual observers' ability to utilize binaural cues in narrowband noise. The large masking release observed for a narrowband noise masker may be due to binaural masking release from non-simultaneous, informational masking.  相似文献   

12.
We compare psychophysical tuning curves obtained with sinusoidal and narrow-band (50-Hz wide) noise maskers in both simultaneous and forward masking. In one experiment, we examine the effects of different combinations of duration and intensity of the 1-kHz sinusoidal signal. In a second experiment, we compare tuning curves obtained with a sinusoidal signal to those obtained with a noise signal. In both experiments, a narrow-band noise is a more effective simultaneous masker than a sinusoid for masker frequencies near the signal frequency. We argue that this is probably due to the use of different detection cues in the presence of sinusoidal and noise maskers, and that the greater masking produced by the noise is not simply due to its greater variability. As observed in other studies, tuning curves are narrower in forward masking than in simultaneous masking.  相似文献   

13.
When more than one sinusoid is used as a masker, more masking is observed than would be predicted by a simple combination of their individual effects. This masking is dramatically increased when the masker components vary in frequency and intensity with each presentation. These studies manipulated several masker parameters under conditions of high masker uncertainty, examining the effect of excluding critical-band components, fixing or randomizing component amplitudes and frequencies, and narrowing the frequency range of the components. The signal was always a 200-ms, 1000-Hz sinusoid, presented simultaneously with the 200-ms masker. Removing critical-band components reduced the amount of masking, but considerable masking remained that appears to be nonperipheral in origin. Fixing masker frequencies across the two intervals of a trial greatly reduced the masking observed, whereas fixing masker amplitudes had no effect. Reducing the frequency range from 5000 to 2700 Hz generally increased the masking observed, but appeared to depend on other masker parameters. Summaries across ten listeners show individual differences that are resistant to extensive training. It is difficult to account for most of the masking observed in terms of masker energy falling near the region of the signal.  相似文献   

14.
The purpose of this investigation was to examine two stimulus parameters that were reasoned to be of importance to comodulation masking release (CMR). The first was the degree of fluctuation, or depth of modulation, in the masker bands, and the second was the temporal position of the signal with respect to the modulations of the masker. The investigation began by demonstrating the efficacy of sinusoidally amplitude-modulated (SAM) tonal complex maskers in eliciting CMR. "Nine-band" maskers, 650 ms in duration, were constructed by adding together nine SAM tones spaced at 100-Hz intervals from 300 to 1100 Hz. The rate of modulation for each SAM tone was 10 Hz, and the depth of modulation was 100%. Using such maskers, it was shown that when the on-frequency SAM tone had a modulation depth of 100%, the threshold for a 250-ms, 700-Hz tone improved monotonically as the modulation depths of the flanking SAM tones increased from 0% to 100%. When the on-frequency SAM tone had a modulation depth of 63%, some listeners performed optimally when the flanking SAM tones also exhibited a modulation depth of 63%, whereas others performed best when the flankers had modulation depths of 100%. With regard to signal position, a typical CMR effect was observed when the signal, consisting of a train of three 50-ms, 700-Hz tone bursts, was placed in the dips of the on-frequency masker. However, when the signal was placed at the peaks of the envelope, an increase in masking was observed for a comodulated masker.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Psychophysical single-pulse forward-masking (SPFM) recovery functions were measured for three electrodes in each of eight subjects with the nucleus mini-22 cochlear implant. Masker and probe stimuli were single 200-micros/phase biphasic current pulses. Recovery functions were measured at several masker levels spanning the electric dynamic range of electrodes chosen from the apical, middle, and basal regions of each subject's electrode array. Recovery functions were described by an exponential process in which threshold shift (in microA) decreased exponentially with increasing time delay between the masker and probe pulses. Two recovery processes were observed: An initial, rapid-recovery process with an average time constant of 5.5 ms was complete by about 10 ms. A second, slow-recovery process involved less masking than the rapid-recovery process but encompassed much longer time delays, sometimes as long as several hundred milliseconds. Growth-of-masking slopes for the rapid process depended upon time delay, as expected in an exponential recovery process. Unity slopes were observed at a time delay of 0 ms, whereas progressively shallower slopes were observed at time delays of 2 ms and 5 ms. Many recovery functions demonstrated nonmonotonicities or "facilitation" at very short masker-probe delays (1-2 ms). Such nonmonotonicities were usually most pronounced at low masker levels. Time constants for the rapid-recovery process did not vary systematically with masker level or with electrode location along the implanted array. Most subjects demonstrated rapid-recovery time constants less than 7 ms; however, the subject with the longest duration of deafness prior to implantation exhibited clearly prolonged time constants (9-24 ms). Time constants obtained on basal electrodes were inversely related to word recognition scores.  相似文献   

16.
Modulation masking: effects of modulation frequency, depth, and phase   总被引:1,自引:0,他引:1  
Modulation thresholds were measured for a sinusoidally amplitude-modulated (SAM) broadband noise in the presence of a SAM broadband background noise with a modulation depth (mm) of 0.00, 0.25, or 0.50, where the condition mm = 0.00 corresponds to standard (unmasked) modulation detection. The modulation frequency of the masker was 4, 16, or 64 Hz; the modulation frequency of the signal ranged from 2-512 Hz. The greatest amount of modulation masking (masked threshold minus unmasked threshold) typically occurred when the signal frequency was near the masker frequency. The modulation masking patterns (amount of modulation masking versus signal frequency) for the 4-Hz masker were low pass, whereas the patterns for the 16- and 64-Hz maskers were somewhat bandpass (although not strictly so). In general, the greater the modulation depth of the masker, the greater the amount of modulation masking (although this trend was reversed for the 4-Hz masker at high signal frequencies). These modulation-masking data suggest that there are channels in the auditory system which are tuned for the detection of modulation frequency, much like there are channels (critical bands or auditory filters) tuned for the detection of spectral frequency.  相似文献   

17.
Frequency difference limens for pure tones preceded by a forward masker or followed by a backward masker were obtained across a wide range of signal levels. Relkin and Doucet [Hear. Res. 55, 215-222 (1991)] have shown that at a masker-signal delay of 100 ms, the thresholds of high-SR (spontaneous rate) auditory-nerve fibers are recovered, while the low-SR fiber thresholds are not. Therefore, forward-masked frequency discrimination potentially offers a method to investigate the role of low-SR fibers in the coding of frequency. It has been shown that when an intense forward masker is presented 100 ms before a pure-tone signal, intensity difference limens are elevated for mid-level signals [Zeng et al., Hear. Res. 55, 223-230 (1991)]. However, Plack and Viemeister [J. Acoust. Soc. Am. 92, 3097-3101 (1992)] have shown that a similar elevation in the intensity difference limen is obtained under conditions of backward masking, where selective adaptation of the auditory neurons would not be expected to occur. A condition of backward-masked frequency discrimination was therefore included to investigate the role of interference resulting from adding additional stimuli to a discrimination task. For signals at 1000 and 6000 Hz, there was no effect of a forward masker upon frequency difference limens. For the backward-masked conditions, an elevation of the frequency difference limen was observed at all signal levels, demonstrating that the effects of forward and backward maskers upon frequency discrimination are dissimilar and suggesting that cognitive effects are present in backward-masked discrimination tasks.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
The present study was a follow-up to a pilot study in which it was found that a 500-Hz-wide narrow-band noise (NBN) masker produced more masking than a tonal (T) masker for signal frequencies both above and below the masker frequency. The aim of the present study was to determine to what extent these results were influenced by an interaction of the relatively rapid temporal envelope fluctuations of the NBN and the short (10-ms) duration of the signal. In the first experiment, the masking produced by a regular NBN, a low-noise noise (LNN), and a T was compared. The LNN produced less masking than the NBN, and about as much as the T, suggesting that the inherent amplitude fluctuations in the NBN were largely responsible for the greater masking produced by that masker. In the second experiment, the masking produced by a regular NBN was compared with that by a T for a signal duration of 10 or 200 ms. The difference in masking between the two maskers was reduced or eliminated when the signal duration was 200 ms, because the threshold in the presence of the NBN masker decreased more with increasing signal duration. This could reflect a decreased "confusion" between the signal and the inherent fluctuations of the NBN masker.  相似文献   

19.
Psychophysical estimates of compression often assume that the basilar-membrane response to frequencies well below characteristic frequency (CF) is linear. Two techniques for estimating compression are described here that do not depend on this assumption at low CFs. In experiment 1, growth of forward masking was measured for both on- and off-frequency pure-tone maskers for pure-tone signals at 250, 500, and 4000 Hz. The on- and off-frequency masking functions at 250 and 500 Hz were just as shallow as the on-frequency masking function at 4000 Hz. In experiment 2, the forward masker level required to mask a fixed low-level signal was measured as a function of the masker-signal interval. The slopes of these functions did not differ between signal frequencies of 250 and 4000 Hz for the on-frequency maskers. At 250 Hz, the slope for the 150-Hz masker was almost as steep as that for the on-frequency masker, whereas at 4000 Hz the slope for the 2400-Hz masker was much shallower than that for the on-frequency masker. The results suggest that there is substantial compression, of around 0.2-0.3 dB/dB, at low CFs in the human auditory system. Furthermore, the results suggest that at low CFs compression does not vary greatly with stimulation frequency relative to CF.  相似文献   

20.
In forward masking, performance may be affected by confusion, that is, by the difficulty of discriminating a suprathreshold signal from the preceding masker. This study investigated confusion effects for forward maskers composed of repeated bursts of a 100-Hz sinusoid followed by sinusoidal signals; such "pulsing" maskers produce confusion when the properties of the signal are identical to those of an individual masker "pulse." The level, frequency, and duration of the signal relative to an individual masker pulse, as well as offset-onset delay, were varied to determine the minimum change necessary to eliminate confusion. For maskers composed of 20-ms pulses, confusion was eliminated by changes in signal level of 5 dB or changes in signal frequency of 30 to 40 Hz. For maskers composed of 10-, 20-, or 40-ms pulses, confusion was eliminated by signal delays of 8 to 16 ms or by signal durations less than half or greater than twice the masker-pulse duration. Results with adaptive procedures designed to measure confusion-free or confusion-determined thresholds suggest that confusion effects can be minimized or avoided by extensive listener training with a procedure in which the signal and masker are not presented at similar intensities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号