首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Titanium dioxide films have been deposited using DC magnetron sputtering technique onto silicon substrates at an ambient temperature and at an oxygen partial pressure of 7 × 10 –5 mbar and sputtering pressure (Ar + O2) of 1 × 10 –3 mbar. The deposited films were calcinated at 673 and 773 K. The composition of the films as analyzed using Auger Electron Spectroscopy (AES) revealed the stoichiometry with an O and Ti ratio of 2.08. The influence of post‐deposition calcination on the Raman scattering of the films was studied. The existence of Raman active modes A1g, B1g and Eg corresponding to the Raman shifts are reported in this paper. The improvement of crystallinity of the TiO2 films as shown by the Raman scattering studies has also been reported. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
Rf magnetron sputtering technique was employed for preparation of tantalum oxide films on quartz and crystalline silicon (111) substrates held at room temperature by sputtering of tantalum in an oxygen partial pressure of 1x10‐4 mbar. The films were annealed in air for an hour in the temperature range 573 – 993 K. The effect of annealing on the chemical binding configuration, structure and optical absorption of tantalum oxide films was systematically studied. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
Thin films of zinc oxide were deposited by dc reactive magnetron sputtering onto glass substrates held at a temperature of 663 K and oxygen partial pressure of 1x10‐3 mbar, and at different sputtering pressures in the range 3x10‐2 ‐ 10x10‐2 mbar. The effect of sputtering pressure on the structural, electrical and optical properties of the films were systematically studied. The films were polycrystalline in nature with preferred (002) orientation. The temperature dependence of Hall mobility indicated that the grain boundary scattering of the charge carriers are predominant in these films. The films formed at a sputtering pressure of 6x10‐2 mbar showed a low electrical resistivity of 6.9x10‐2 Ohm cm, optical transmittance of 83% with an optical band gap of 3.28 eV.  相似文献   

4.
This paper deals with the preparation of Zirconium Nitride films by DC reactive magnetron sputtering. Films were deposited on silicon substrates at room temperature. Nitrogen partial pressure was varied from 4 × 10−5 to 10 × 10−5 m bar and the effect on the structural, electrical, optical properties of the films was systematically studied. The films formed at a nitrogen pressure of 6 × 10−5 mbar showed low electrical resistivity of 1.726 × 10−3 Ω.cm. The deposited films were found to be crystalline with refractive index and extinction coefficient 1.95 and 0.4352 respectively. (© 2003 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
Thin films of Ag2Cu2O3 were formed on glass substrates by RF magnetron sputtering technique under different oxygen partial pressures in the range 5 × 10‐3 – 8 × 10‐2 Pa using mosaic target of Ag70Cu30. The influence of oxygen partial pressure on the core level binding energies, crystallographic structure, and electrical and optical properties of the deposited films was studied. The atomic ratio of copper to silver in the films was 0.302. The oxygen content was in correlation with the oxygen partial pressure maintained during the growth of the films. The films formed at oxygen partial pressures < 2 × 10‐2 Pa was mixed phase of Ag2Cu2O3 and Ag. The films deposited at 2 × 10‐2 Pa were single phase of Ag2Cu2O3. The crystallite size of the films formed at 2 × 10‐2 Pa was 12 nm, while those films annealed at 473 K was 16 nm. The nanocrystalline Ag2Cu2O3 films formed at oxygen partial pressure of 2 × 10‐2 Pa showed electrical resistivity of 8.2 Ωcm and optical band gap of 1.95 eV. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
Zinc oxide films were deposited on glass substrates in argon and oxygen atmosphere by dc reactive magnetron sputtering using a metallic zinc target. The influence of oxygen pressure and substrate temperature on the structure and optical properties of the films were systematically investigated and optimised the deposition parameters to prepare single phase zinc oxide films with preferred (002) orientation. At an optimum oxygen pressure of 1x10-3 mbar and substrate temperature of 663 K, the films exhibited an optical transmittance of 83% with a band gap of 3.28 eV.  相似文献   

7.
Influences of the different annealing ambient (in air, 1 bar, 2 bar, 3 bar and 4 bar oxygen partial pressure) on the titanium dioxide (TiO2) thin films deposited on soda lime glass by standard radio frequency (rf) magnetron reactive sputtering method at 100 watt were investigated by means of X–ray diffractometer (XRD), ultra violet spectrometer (UV–vis), and Scanning Electron Microscopy (SEM). It was found that either optical properties or energy band gaps of the films enhanced with increase in the oxygen partial pressure up to 3 bar. The energy band gaps of the films (except for the film annealed in 4 bar oxygen partial pressure) became larger than the film annealed in atmospheric pressure. The best transmission was observed for the thin film annealed in 3 bar oxygen partial pressure. Moreover, not only was grain–like structure found to be more dominant than dot–like structure but also growth of anatase phase was observed instead of that of the rutile phase with increasing oxygen partial pressure up to 3 bar. (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
Zirconium oxide thin films have been deposited on Si (100) substrates at room temperature at an optimized oxygen partial pressure of 3x10‐2 mbar by reactive pulsed laser deposition. High temperature x‐ray diffraction (HTXRD) studies of the film in the temperature range room temperature‐1473 K revealed that the film contained only monoclinic phase at temperatures ≤ 673 K and both monoclinic and tetragonal phases were present at temperatures ≥ 773 K. The tetragonal phase content was significantly dominating over monoclinic phase with the increase of temperature. The phase evolution was accompanied with the increase in the crystallite size from 20 to 40 nm for the tetragonal phase. The mean thermal expansion coefficients for the tetragonal phase have been found to be 10.58x10‐6 K‐1 and 20.92x10‐6K‐1 along a and c‐axes, respectively. The mean volume thermal expansion coefficient is 42.34x10‐6 K‐1 in the temperature range 773‐1473 K. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

9.
《Journal of Crystal Growth》2003,247(3-4):393-400
Using a highly conductive ZnO(ZnAl2O4) ceramic target, c-axis-oriented transparent conductive ZnO:Al2O3 (ZAO) thin films were prepared on glass sheet substrates by direct current planar magnetron sputtering. The structural, electrical and optical properties of the films (deposited at different temperatures and annealed at 400°C in vacuum) were characterized with several techniques. The experimental results show that the electrical resistivity of films deposited at 320°C is 2.67×10−4 Ω cm and can be further reduced to as low as 1.5×10−4 Ω cm by annealing at 400°C for 2 h in a vacuum pressure of 10−5 Torr. ZAO thin films deposited at room temperature have flaky crystallites with an average grain size of ∼100 nm; however those deposited at 320°C have tetrahedron grains with an average grain size of ∼150 nm. By increasing the deposition temperature or the post-deposition vacuum annealing, the carrier concentration of ZAO thin films increases, and the absorption edge in the transmission spectra shifts toward the shorter wavelength side (blue shift).  相似文献   

10.
Indium Antimonide (InSb) thin films were grown onto well cleaned glass substrates at different substrate temperatures (303, 373 and 473 K) by vacuum evaporation. The elemental composition of the deposited InSb film was found to be 52.9% (In) and 47.1% (Sb). X‐ray diffraction studies confirm the polycrystallinity of the films and the films show preferential orientation along the (111) plane. The particle size (D), dislocation density (δ) and strain (ε) were evaluated. The particle size increases with the increase of substrate temperature, which was found to be in the range from 22.36 to 32.59 nm. In Laser Raman study, the presence of longitudinal mode (LO) confirms that the deposited films were having the crystalline nature. Raman peak located at 191.26 cm–1 shift towards the lower frequencies and narrows with increase in deposition temperature. This indicates that the crystallinity is improved in the films deposited at higher substrate temperatures. Hall measurements indicate that the films were p‐type, having carrier concentration ≅1016 cm–3 and mobility (4–7.7) ×103 cm2/Vs. It is observed that the carrier concentration (N) decreases and the Hall mobility (μ) increases with the increase of substrate temperature. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
Nano‐crystalline silver oxide films were deposited on glass and silicon substrates held at room temperature by RF magnetron sputtering of silver target under different oxygen partial pressures. The influence of oxygen partial pressure on the structural, morphological, electrical and optical properties of deposited films was investigated. Varying oxygen partial pressure during the sputter deposition leads to changes of mixed phase of Ag2O and Ag to a single phase of Ag2O and to AgO. The X‐ray diffraction and X‐ray photoelectron spectroscopy results showed the formation of single phase Ag2O with cubic structure at oxygen partial pressures of 2x10‐2 Pa while the films deposited at higher oxygen partial pressure of 9x10‐2 Pa showed the formation of single phase of AgO with monoclinic structure. Raman spectroscopic studies on the single phase Ag2O showed the stretching vibration of Ag‐O bonds. Single‐phase Ag2O films obtained at oxygen partial pressure of 2x10‐2 Pa were nano‐crystalline with crystallite size of 20 nm and possessed an electrical resistivity of 5.2x10‐3 Ωcm and optical band gap of 2.05 eV. The films deposited at higher oxygen partial pressure of 9x10‐2 Pa were of AgO with electrical resistivity of 1.8x10‐2 Ωcm and optical band gap of 2.13 eV. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
Sb2S3 thin films are obtained by evaporating of Sb2S3 powder onto glass substrates maintained at room temperature under pressure of 2×10‐5 torr. The composition of the thin films was determined by energy dispersive analysis of X‐ray (EDAX). The effect of thermal annealing in vacuum on the structural properties was studied using X‐ray diffraction (XRD) technique and scanning electron microscopy (SEM). The as‐deposition films were amorphous, while the annealed films have an orthorhombic polycrystalline structure. The optical constants of as‐deposited and annealed Sb2S3 thin films were obtained from the analysis of the experimental recorded transmission spectral data over the wavelength range 400‐1400 nm. The transmittance analysis allowed the determination of refractive index as function of wavelength. It was found that the refractive dispersion data obeyed the single oscillator model, from which the dispersion parameters (oscillator energy, E0, dispersion energy, Ed) were determined. The static refractive index n(0), static dielectric constant, ε, and optical band gap energy, Eg, were also calculated using the values of dispersion parameters. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
Thin films of Sb2Te2Se were prepared by conventional thermal evaporation of the presynthesized material on Corning glass substrates. The chemical composition of the samples was determined by means of energy‐dispersive X‐ray spectrometry. X‐ray diffraction studies on the as‐deposited and annealed films revealed an amorphous‐to‐crystalline phase transition. The as‐deposited and annealed films at T a = 323 and 373 K are amorphous, while those annealed at T a= 423 and 473 K are crystalline with a single‐phase of a rhombohedral crystalline structure as that of the source material. The unit‐cell lattice parameters were determined and compared with the reported data. The optical constants (n , k ) of the investigated films were determined from the transmittance and reflectance data at normal incidence in the spectral range 400–2500 nm. The analysis of the absorption spectra revealed non‐direct energy gaps, characterizing the amorphous films, while the crystalline films exhibited direct energy gaps. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
GeO2 thin films were prepared by sol‐gel method on ITO/Glass substrate. The electrical and optical properties and the microstructures of these films were investigated with special emphasis on the effects of an annealing treatment in ambient air. The films were annealed at various temperatures from 500 °C to 700 °C. Structural analysis through X‐ray diffraction (XRD) and atomic force microscope (AFM) showed that surface structure and morphological characteristics were sensitive to the treatment conditions. The optical transmittance spectra of the GeO2/ITO/Glass were measured using a UV‐visible spectrophotometer. All films exhibited GeO2 (101) orientation perpendicular to the substrate surface where the grain size increased with increasing annealing temperature. The optical transmittance spectroscopy further revealed high transparency (over 70 %) in the wave range 400 – 800 nm of the visible region. At an annealing temperature level of 700 °C, the GeO2 films were found to possess a leakage current density of 1.31×10‐6A/cm2 at an electrical field of 20 kV/cm. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
Transparent conductive gallium‐doped zinc oxide (Ga‐doped ZnO) films were prepared on glass substrate by magnetron sputtering. The influence of substrate temperature on structural, optoelectrical and surface properties of the films were investigated by X‐ray diffraction (XRD), X‐ray photoelectron spectroscopy (XPS), spectrophotometer, four‐point probe and goniometry, respectively. Experimental results show that all the films are found to be oriented along the c‐axis. The grain size and optical transmittance of the films increase with increasing substrate temperature. The average transmittance in the visible wavelength range is above 83% for all the samples. It is observed that the optoelectrical property is correlated with the film structure. The Ga‐doped ZnO film grown at the substrate temperature of 400 °C has the highest figure of merit of 1.25 × 10−2 Ω−1, the lowest resistivity of 1.56 × 10−3 Ω·cm and the highest surface energy of 32.3 mJ/m2.  相似文献   

16.
Cd0.9Zn0.1Te thin films were prepared by vacuum evaporation onto well‐cleaned glass substrates maintained at 300, 373 and 473 K. X‐ray diffraction studies revealed that the films have zinc blende structure with preferential (111) orientation. Raman peak of the room temperature deposited film appeared at 140.30 cm‐1 and 159.65 cm‐1 were for the transverse optic (TO) and longitudinal optic (LO) phonons respectively. The XRD patterns of the higher substrate temperature deposited films exhibited an improvement in the crystallinity of the films. The Raman peak intensity increases and the FWHM decreases for the films deposited at higher substrate temperature. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
Thin films of antimony trisulfide (Sb2S3) were prepared by thermal evaporation under vacuum (p=5×10–5 torr) on glass substrates maintained at various temperatures between 293 K and 523 K. Their microstructural properties have obtained by transmission electron microscopy (TEM). The electron diffraction analysis showed the occurrence of amorphous to polycrystalline transition in the films deposited at higher temperature of substrates (523 K). The polycrystalline thin films were found to have an orthorhombic structure. The interplanar distances and unit‐cell parameters were determined by high‐resolution transmission electron microscopy (HRTEM) and compared with the standard values for Sb2S3. The surface morphology of Sb2S3 thin films was investigated by scanning electron microscopy (SEM). The optical transmission spectra at normal incidence of Sb2S3 thin films have been measured in the spectral range of 400–1400 nm. The analysis of the absorption spectra revealed indirect energy gaps, characterizing of amorphous films, while the polycrystalline films exhibited direct energy gap. From the photon energy dependence of absorption coefficient, the optical band gap energy, Eg, were calculated for each thin films. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
Effects of substrate temperature and atmosphere on the electrical and optical properties of Ga‐doped ZnO thin films deposited by rf magnetron sputtering were investigated. The electrical resistivity of Ga‐doped ZnO (GZO) films decreases as the substrate temperature increases from room temperature to 300°C. A minimum resistivity of 3.3 × 10–4 Ω cm is obtained at 300°C and then the resistivity increases with a further increase in the substrate temperature to 400°C. This change in resistivity with the substrate temperature is related to the crystallinity of the GZO film. The resistivity nearly does not change with the O2/Ar flow ratio, R for R < 0.25 but increases rapidly with R for R > 0.25. This change in resistivity with R is also related to crystallinity. The crystallinity is enhanced as R increases, but if the oxygen partial pressure is higher than a certain level (R = 0.25 ± 0.10) gallium oxides precipitate at grain boundaries, which decrease both carrier concentration and mobility. Optical transmittance increases as R increases for R < 0.75. This change in transmittance with R is related to changes in oxygen vacancy concentration and surface roughness with R. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

19.
Undoped and Indium doped tin disulphide (SnS2) thin films had been deposited onto glass substrates at Ts = 300 °C using spray pyrolysis technique under atmospheric pressure with stannous chloride, indium chloride and thiourea as precursors. The structural, optical and electrical properties of the deposited films were characterized. The XRD pattern revealed that the undoped and doped films had preferred orientation along (002) plane with hexagonal structure. FESEM micrographs had shown that morphologies of the films changed with indium doping. Optical constant such as refractive index (n), extinction coefficient (k), real and imaginary parts of dielectric constants were evaluated from transmittance and reflectance spectra in UV‐Visible spectroscopy. The optical absorption data were used to determine the band gap energy and it was found to be 2.75 eV for undoped and 2.50 eV for indium doped films respectively. The room temperature dark resistivity was found to be 4.545 × 103 Ω‐cm and 5.406 × 103 Ω‐cm for undoped and In‐doped films respectively.  相似文献   

20.
Amorphous tungsten-doped In2O3 (IWO) films were deposited from a metallic target by dc magnetron sputtering at room temperature. Both oxygen partial pressure and sputtering power have significant effects on the electrical and optical properties of the films. The as-deposited IWO films with the optimum resistivity of 5.8 × 10?4 Ω·cm and the average optical transmittance of 92.3% from 400 to 700 nm were obtained at a W content of 1 wt%. The average transmittance in the near infrared region (700–2500 nm) is 84.6–92.8% for amorphous IWO prepared under varied oxygen partial pressure. The mobility of the IWO films reaches its highest value of 30.3 cm2 V?1 s?1 with the carrier concentration of 1.6 × 1020 cm?3, confirming their potential application as transparent conductive oxide films in various flexible devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号