首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
An unsymmetrical heterocyclic diamine, 1,2‐dihydro‐2‐(4‐aminophenyl)‐4‐[4‐(4‐aminophenoxy)‐4‐phenyl]‐(2H)phthalazin‐1‐one, was synthesized. Its 1H and 13C NMR spectra were completely assigned by utilizing the two‐dimensional heteronuclear 13C–1H multiple‐bond coherence (HMBC) spectroscopy, and heteronuclear 13C–1H one‐bond correlation spectroscopy, homonuclear shift correlation spectroscopy (H,H‐COSY) and rotating frame Overhauser enhancement spectroscopy (ROESY). The structure of the compound was shown to be the phthalazinone rather than the phthalazine ether from cross peaks and chemical shifts of the protons. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

2.
Four new compounds based on H2BDC and PyBIm [H2BDC = 1,4‐benzenedicarboxylatic acid, PyBIm = 2‐(4‐pyridyl)benzimidazole], (PyBIm)(H2BDC)0.5 ( 1 ), Co(PyBIm)2(HBDC)(BDC)0.5 ( 2 ), Ni(PyBIm)2(HBDC)(BDC)0.5 ( 3 ), and Zn(BDC)(PyBIm) · H2O ( 4 ), were synthesized by hydrothermal methods and characterized by X‐ray diffraction. Compound 1 contains two types of hydrogen bonding N–H ··· N and O–H ··· N, which connect the molecules into a two‐dimensional (2D) layer. Complex 2 crystallizes isostructural to 3 in triclinic space group P$\bar{1}$ , in 1D chains. The hydrogen‐bonding interactions between uncoordinated N, N–H and COOH groups in 2 connect the 1D chains into a 2D layer. Complex 4 displays a 1D structure, which is finally extended to a 3D supramolecular framework by hydrogen bonding and π–π packing interactions. The magnetic properties of compounds 2 and 3 were studied as well.  相似文献   

3.
4.
Through photocatalysed regiospecific and stereoselective additions of cycloamines to 5‐(R)‐(l)‐menthyloxy‐2 (5H)‐furanone (3), chiral 5‐(R)‐(l)‐menthyloxy‐4‐cycloaminobutyrolactones were synthesized. In the new asymmetric photoaddition of compound 3, the N‐methyl cyclic amines (4) gave novel chiral C? C photoadducts (5) in 24–50% isolated yields with d. e. ≥ 98%. However, the secondary cyclic amines (6) afforded optically active N? C photoadducts (7) in 34–58% isolated yields with d. e. ≥ 98% under the same condition. All the synthesized optically active compounds were identified on the basis of their analytical data and spectroscopic data, such as [α]58920, IR, 1H NMR, 13C NMR, MS and elementary analysis. The photosynthesis of chiral butyrolactones and its mechanism were discussed in detail.  相似文献   

5.
The effect of annealing on the acidity and water uptake of Nafion films has been studied by using the acidity sensing fluorophore 2‐(4′‐pyridyl)benzimidazole (4PBI). The difference in acidity and the microenvironment of the fluorophore in annealed and nonannealed films is brought out in this study. The annealed film is found to have less water uptake than nonannealed films. The amount of water uptake increases upon acid treatment of the films, as all the steady‐state and time‐resolved behaviour of the molecule in nonannealed films is restored. These observations are rationalised by the formation of anhydrides upon annealing and their hydrolysis to sulfonic acid groups upon acid treatment. Interestingly, the acidity of annealed films is found to be even less than that of Na+exchanged films, indicating that annealing removes more protons from the Nafion films than cation exchange can.  相似文献   

6.
The title compound, C9H9NS3, crystallizes with two mol­ecules in the asymmetric unit. In both mol­ecules, the di­thia­ne‐2‐thione rings adopt a symmetric half‐boat conformation with the C atom opposite the C—Sthione bond out of the plane. The pyridine ring is in an equatorial position and is twisted out of the plane of the half‐boat by 82.7 (2) and 84.5 (2)° in the two mol­ecules, so that the N atom is trans to the axial C—H bond in both cases.  相似文献   

7.
The synthesis of some new S‐nucleosides of 5‐(4‐pyridyl)‐4‐aryl‐4H‐1,2,4‐triazole‐3‐thiols ( 4a‐n ) is described. Direct glycosylation of ( 4a‐n ) with tetra‐O‐acetyl‐α‐D‐glucopyranosyl bromide in the presence of potassium hydroxide followed by deacetylation using dry ammonia in methanol gave the corresponding 3‐S‐(ñ‐D‐glucopyranosyl)‐5‐(4‐pyridyl)‐4‐aryl‐4H‐1,2,4‐triazoles ( 6a‐n ) in good yields. All the compounds were fully characterized by means of 1HNMR, 13C NMR spectra and elemental analyses. To assist in the interpretation of the spectroscopic data, the crystal structure of 3‐S‐(2′,3′,4′,6′‐tetra‐O‐acetyl‐β‐D‐glucopyranosyl)‐5‐(4‐pyridyl)‐4‐phenyl‐4H‐1,2,4‐triazole ( 5a ) was determined by X‐ray diffraction.  相似文献   

8.
9.
The NdIII coordination compounds [Nd(4‐pytza)3(H2O)2] · 2H2O ( 1 ) and [Nd(4‐pytza)2(H2O)4]Cl · 2H2O ( 2 ) [H4‐pytza = 5‐(4‐pyridyl)tetrazole‐2‐acetic acid] were synthesized by reactions of K4‐pytza and NdCl3 · 6H2O at different pH values. Single crystal X‐ray diffraction analysis reveals that 4‐pytza ligands in 1 in a μ1,3‐COO synsyn or μ1,1,3‐COO bridging mode coordinate to two central NdIII atoms to display a dinuclear unit, which is connected by one of these 4‐pytza ligands acting in end‐to‐end bridging mode to form a 1D ladder‐like chain. Different from 1 , each 4‐pytza in 2 with a μ1,3‐COO synanti bridging mode coordinates to two NdIII atoms to display a 1D zigzag chain. Furthermore, the luminescence properties of 1 and 2 were investigated at room temperature in the solid state.  相似文献   

10.
The title compounds, C18H21NO and C18H21NS, in their enantiomerically pure forms are isostructural with the enantiomerically pure 4‐(4‐hydroxyphenyl)‐2,2,4‐trimethylchroman and 4‐(2,4‐dihydroxyphenyl)‐2,2,4‐trimethylchroman analogues and form extended linear chains via N—H...O or N—H...S hydrogen bonding along the [100] direction. The absolute configuration for both compounds was determined by anomalous dispersion methods with reference to both the Flack parameter and, for the light‐atom compound, Bayesian statistics on Bijvoet differences.  相似文献   

11.
12.
A series of silver(I) supramolecular complexes, namely, {[Ag(L24)](NO3)}n ( 1 ), [Ag2(L24)(NO2)2]n ( 2 ), and {[Ag1.25(L24)(DMF)](PF6)1.25}n ( 3 ) were prepared by the reactions of 1‐(2‐pyridyl)‐2‐(4‐pyridyl)‐1,2,4‐triazole (L24) and silver(I) salts with different anions (AgNO3, AgNO2, AgPF6). Single‐crystal X‐ray diffraction indicates that 1 – 3 display diverse supramolecular networks. The structure of dinuclear complex 1 is composed of a six‐membered Ag2N4 ring with the Ag ··· Ag distance of 4.4137(3) Å. In complex 2 , the adjacent AgI centers are interlinked by L24 ligands into a 1D chain, the adjacent of which are further extended by the bridged nitrites to construct a 2D coordination architecture. Complex 3 shows a 3D (3,4)‐connected framework, which is generated by the linkage of L24 ligands. All complexes were characterized by IR spectra, elemental analysis, and powder X‐ray diffraction. Notably, a structural comparison of the complexes demonstrates that their structures are predominated by the nature of anions. Additionally, 1 and 2 show efficient dichromate (Cr2O72–) capture in water system, which can be ascribed to the anion‐exchange.  相似文献   

13.
In continuation of our work, we synthesized 2‐(sulfamoylphenyl)‐4′‐amino‐4‐(4″‐hydroxyphenyl)‐thiazole ( 3a ), which were reacted with various (aryl/hetroaryl) aldehyde to form 2‐(sulfamoylphenyl)‐4′‐(iminoaryl/hetroaryl)‐4‐(4″‐hydroxyphenyl)‐thiazoles ( 4a , 4b , 4c , 4d , 4e , 4f ). Glucosylation of compounds ( 4a , 4b , 4c , 4d , 4e , 4f ) have been done by using acetobromoglucose as a glucosyl donor to afford 2‐(sulfamoylphenyl)‐4′‐(iminoaryl/hetroaryl)‐4‐(2,3,4,6‐tetra‐O‐acetyl‐4″‐O‐β‐D ‐glucosidoxyphenyl)‐thiazoles ( 5a , 5b , 5c , 5d , 5e , 5f ), further on deacetylation to produce 2‐(sulfamoylphenyl)‐4′‐(iminoaryl/hetroaryl)‐4‐(4″‐O‐β‐D ‐glucosidoxyphenyl)‐thiazoles ( 6a , 6b , 6c , 6d , 6e , 6f ). The compounds are confirmed by FTIR, 1H‐NMR, 13C‐NMR, and ES‐Mass spectral analysis. J. Heterocyclic Chem., (2011).  相似文献   

14.
The crystal structure of the title compound, C14H12N4O3, shows that the stereochemistry about the N=N double bond of the N=N—N(H) moiety is trans. The whole mol­ecule is almost planar (r.m.s. deviation = 0.0654 Å), the interplanar angle between the phenyl rings being 0.7 (1)° and the largest interplanar angle being that between the phenyl ring and the nitro group of the 4‐nitro­phenyl substituent [11.5 (2)°]. Intermolecular N—H⋯O interactions between mol­ecules related by translation give rise to chains along the [110] and [10] directions, and these chains are held together by N⋯O π–π interactions. An unequal distribution of the double‐bond character among the N atoms suggests a delocalization of π electrons over the diazo­amine group and the adjacent aryl substituents.  相似文献   

15.
Peripherally metalated porphyrinoids are promising functional π‐systems displaying characteristic optical, electronic, and catalytic properties. In this work, 5‐(2‐pyridyl)‐ and 5,10,15‐tri(2‐pyridyl)‐BIII‐subporphyrins were prepared and used to produce cyclometalated subporphyrins by reactions with [Cp*IrCl2]2, which proceeded through an efficient C?H activation to give the corresponding mono‐ and tri‐IrIII complexes, respectively. While the mono‐IrIII complex was obtained as a diastereomeric mixture, a C3‐symmetric tri‐IrIII complex with the three Cp*‐units all at the concave side was predominantly obtained in a high yield of 90 %, which displays weak NIR phosphorescence even at room temperature in degassed CH2Cl2, differently from the mono‐IrIII complexes.  相似文献   

16.
The title compound, C12H8N2O6S2, (I), is a positional isomer of S‐(2‐nitrophenyl) 2‐nitrobenzenethiosulfonate [Glidewell, Low & Wardell (2000). Acta Cryst. B 56 , 893–905], (II). The most obvious difference between the two isomers is the rotation of the nitro groups with respect to the planes of the adjacent aryl rings. In (I), the nitro groups are only slightly rotated out of the plane of the adjacent aryl ring [2.4 (6) and 6.7 (7)°], while in (II) the nitro groups are rotated by between 37 and 52°, in every case associated with S—S—C—C torsion angles close to 90°. Other important differences between the isomers are the C—S—S(O2)—C torsion angle [78.39 (2)° for (I) and 69.8 (3)° for (II) (mean)] and the dihedral angles between the aromatic rings [12.3 (3)° for (I) and 28.6 (3)° for (II) (mean)]. There are two types of C—H...O hydrogen bond in the structure [C...O = 3.262 (7) Å and C—H...O = 144°; C...O = 3.447 (7) Å and C—H...O = 166°] and these link the molecules into a two‐dimensional framework. The hydrogen‐bond‐acceptor properties differ between the two isomers.  相似文献   

17.
18.
19.
The bidentate P,N hybrid ligand 1 allows access for the first time to novel cationic phosphinine‐based RhIII and IrIII complexes, broadening significantly the scope of low‐coordinate aromatic phosphorus heterocycles for potential applications. The coordination chemistry of 1 towards RhIII and IrIII was investigated and compared with the analogous 2,2′‐bipyridine derivative, 2‐(2′‐pyridyl)‐4,6‐diphenylpyridine ( 2 ), which showed significant differences. The molecular structures of [RhCl(Cp*)( 1 )]Cl and [IrCl(Cp*)( 1 )]Cl (Cp*=pentamethylcyclopentadienyl) were determined by means of X‐ray diffraction and confirm the mononuclear nature of the λ3‐phosphinine–RhIII and IrIII complexes. In contrast, a different reactivity and coordination behavior was found for the nitrogen analogue 2 , especially towards RhIII as a bimetallic ion pair [RhCl(Cp*)( 2 )]+[RhCl3(Cp*)]? is formed rather than a mononuclear coordination compound. [RhCl(Cp*)( 1 )]Cl and [IrCl(Cp*)( 1 )]Cl react with water regio‐ and diastereoselectively at the external P?C double bond, leading exclusively to the anti‐addition products [MCl(Cp*)( 1 H ? OH)]Cl as confirmed by X‐ray crystal‐structure determination.  相似文献   

20.
Syntheses and X‐ray structural investigations have been carried out for (E)‐(4‐hydroxy­phenyl)(4‐nitro­phenyl)­diazene, C12H9N3O3, (Ia), (E)‐(4‐methoxy­phenyl)(4‐nitro­phenyl)­diazene, C13H11N3O3, (IIIa), and (E)‐[4‐(6‐bromo­hexyl­oxy)­phenyl](4‐cyano­phenyl)­diazene, C19H20BrN3O, (IIIc). In all of these compounds, the mol­ecules are almost planar and the azo­benzene core has a trans geometry. Compound (Ia) contains four and compound (IIIc) contains two independent mol­ecules in the asymmetric unit, both in space group P (No. 2). In compound (Ia), the independent mol­ecules are almost identical, whereas in crystal (IIIc), the two independent mol­ecules differ significantly due to different conformations of the alkyl tails. In the crystals of (Ia) and (IIIa), the mol­ecules are arranged in almost planar sheets. In the crystal of (IIIc), the mol­ecules are packed with a marked separation of the azo­benzene cores and alkyl tails, which is common for the solid crystalline precursors of mesogens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号