首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Preparation, Spectroscopic Characterization and Crystal Structures of Mercury(II)‐bis(tetracyanoborate) Hg[B(CN)4]2 and Dimercury(I)‐bis(tetracyanoborate) Hg2[B(CN)4]2 Hg[B(CN)4]2 ( 1 ) is synthesised by the reaction between Hg(NO3)2 and K[B(CN)4]2. In a comproportionation reaction of 1 with elemental mercury the corresponding mercury(I) salt Hg2[B(CN)4]2 ( 2 ) is obtained. The compounds were characterised by vibrational‐ and NMR‐spectroscopy, and their crystal structures were determined. Hg[B(CN)4]2 crystallizes in the trigonal system in the space group P3¯m1 with a = 781.75(3) pm, c = 601.68(2) pm, V = 318.44(2)Å3, and one formula unit per unit cell. For Hg2[B(CN)4]2 an orthorhombic unit cell with a = 568.9(1) pm, b = 3280.9(7) pm, c = 601.68(2) pm, V = 1389.6(5)Å, and Z = 4 is observed.  相似文献   

2.
3.
A series of novel ionic liquids composed of imidazolium, pyridinium, pyrrolidinium, and ammonium cations with tricyanomethanide or tetracyanoborate anions were prepared. The ionic liquids were characterized by NMR and IR spectroscopy and ESI-mass spectrometry, and their physical properties were investigated. Solid state structures of the N-propyl-N-methylpyrrolidinium and triethylpropylammonium tetracyanoborate salts were obtained by single crystal X-ray diffraction. The salts that are liquid at room temperature were evaluated as electrolyte additives in dye-sensitized solar cells, giving rise to efficiencies 7.35 and 7.85% under 100 and 10% Sun, respectively, in combination with the standard Z907 dye.  相似文献   

4.
5.
The title compounds, C14H12Br2Se2, (I), C14H12Cl2Se2, (II), and C14H14O2Se2, (III), feature a diselenide bridge between two o‐benzyl bromide [in (I)], two o‐benzyl chloride [in (II)] or two o‐benzyl alcohol units [in (III)]. In the molecular structure of (I) and in both independent molecules of (II), close contacts are observed between the halogen centres and the diselenide unit. In the case of modification (IIIa), strong hydrogen bonds between the –OH groups dominate, whereas the molecular structures of modification (IIIb) and bis{2‐[(dimethylamino)methyl]phenyl} diselenide, C18H24N2Se2, (IV), are comparable with those of (I) and (II). A correlation between the strength of the contacts and the angle between the benzene planes and the Se—Se units is found.  相似文献   

6.
Although pure hydrogen cyanide can spontaneously polymerize or even explode, when initiated by small amounts of bases (e.g. CN?), the reaction of liquid HCN with [WCC]CN (WCC=weakly coordinating cation=Ph4P, Ph3PNPPh3=PNP) was investigated. Depending on the cation, it was possible to extract salts containing the formal dihydrogen tricyanide [CN(HCN)2]? and trihydrogen tetracyanide ions [CN(HCN)3]? from liquid HCN when a fast crystallization was carried out at low temperatures. X‐ray structure elucidation revealed hydrogen‐bridged linear [CN(HCN)2]? and Y‐shaped [CN(HCN)3]? molecular ions in the crystal. Both anions can be considered members of highly labile cyanide‐HCN solvates of the type [CN(HCN)n]? (n=1, 2, 3 …) as well as formal polypseudohalide ions.  相似文献   

7.
Equilibrium structures of title ions are determined by DFT calculations (TPSS with the τ‐dependent gradient‐corrected functional as implemented in the GAUSSIAN09 code).  相似文献   

8.
The palladium(II) and platin(II) 1, 1‐dicyanoethylene‐2, 2‐dithiolates [(L–L)M{S2C=C(CN)2}] (M = Pd: L–L = dppm, dppe, dcpe, dpmb; M = Pt: dppe, dcpe, dpmb) were prepared either from[(L–L)MCl2] and K2[S2C=C(CN)2] or from [(PPh3)2M{S2C=C(CN)2}] and the bisphosphane. Moreover, [(dppe)Pt{S2C=C(CN)2}]was obtained from [(1, 5‐C8H12)Pt{S2C=C(CN)2}] and dppeby ligand exchange. The 1, 1‐dicyanoethylene‐2, 2‐diselenolates[(dppe)M{Se2C=C(CN)2}] (M = Pd, Pt) were prepared from[(dppe)MCl2] and K2[Se2C=C(CN)2]. The oxidation potentials of the square‐planar palladium and platinum complexes were determined by cyclic voltammetry. The reaction of [(dcpe)Pd(S2C=O)] with TCNE led to a ligand fragment exchange and gave the 1, 1‐dicyanoethylene‐2, 2‐dithiolate [(dcpe)Pd{S2C=C(CN)2}] in good yield.  相似文献   

9.
Diborane(6) dianions with substituents that are bonded to boron via carbon are very reactive and therefore only a few examples are known. Diborane(6) derivatives are the simplest catenated boron compounds with an electron‐precise B–B σ‐bond that are of fundamental interest and of relevance for material applications. The homoleptic hexacyanodiborane(6) dianion [B2(CN)6]2− that is chemically very robust is reported. The dianion is air‐stable and resistant against boiling water and anhydrous hydrogen fluoride. Its salts are thermally highly stable, for example, decomposition of (H3O)2[B2(CN)6] starts at 200 °C. The [B2(CN)6]2− dianion is readily accessible starting from 1) B(CN)32− and an oxidant, 2) [BF(CN)3] and a reductant, or 3) by the reaction of B(CN)32− with [BHal(CN)3] (Hal=F, Br). The latter reaction was found to proceed via a triply negatively charged transition state according to an SN2 mechanism.  相似文献   

10.
[Tetrakis(acetonitrile)‐dibromo‐nickel(II)]‐di‐acetonitrile was obtained from a solution of nickel(II) dibromide in acetonitrile at 258 K. The crystal structure [monoclinic, P21/n (no.14), a = 1005.5(5), b = 831.3(5) , c = 1131.7(5) pm, β = 106.263(5)°, V = 908.1(8)·106 pm3, Z = 2, R1 for 1580 reflections with I0>2σ(I0): 0.0505] contains sixfold coordinated NiII atoms. Two trans coordinating bromide anions and four equatorial acetonitrile molecules form an elongated octahedron around the central NiII atom. [Ni(CH3CN)4Br2] octahedra are connected via hydrogen bonds to neighboring octahedra as well as to solvate acetonitrile molecules.  相似文献   

11.
In the structures of the two title calix[4]arene derivatives, C32H28N12O4, (I), and C60H68Cl2N2O6, (II), compound (I) adopts an open‐cone conformation in which there are four intramolecular O—H...O hydrogen bonds, while compound (II) adopts a distorted chalice conformation where the two pendant pyridyl rings, one of which is disordered, are almost mutually perpendicular, with an interplanar angle of 79.2 (2) or 71.4 (2)°. The dihedral angles between the virtual plane defined by the four bridging methylene C atoms and the phenol rings are 120.27 (7), 124.03 (6), 120.14 (8) and 128.25 (7)° for (I), and 95.99 (8), 135.93 (7), 97.21 (8) and 126.10 (8)° for (II). In the supramolecular structure of (I), pairs of molecules associate by self‐inclusion, where one azide group of the molecule is inserted into the cavity of the inversion‐related molecule, and the association is stabilized by weak intermolecular C—H...N hydrogen bonds and π(N3)–π(aromatic) interactions. The molecular pairs are linked into a two‐dimensional network by a combination of weak intermolecular C—H...N contacts. Each network is further connected to its neighbor to produce a three‐dimensional framework via intersheet C—H...N hydrogen bonds. In the crystal packing of (II), the molecular components are linked into an infinite chain by intermolecular C—H...O hydrogen bonds. This study demonstrates the ability of calix[4]arene derivatives to form self‐inclusion structures.  相似文献   

12.
The title compound, [Zn(C7H8NO3S)2(H2O)4], has an octahedral coordination around the central Zn atom composed of two axial N atoms from the pyridine ligands and four equatorial O atoms of water mol­ecules, forming a monomeric centrosymmetric complex. The two Zn—N bond distances are 2.102 (3) Å, while the four Zn—O bond distances range from 2.114 (2) to 2.167 (2) Å. Packing is determined by hydrogen bonds formed by the water mol­ecules. The sulfonate group does not take part in coordination to the Zn atom.  相似文献   

13.
The title compound, C36H44N6O4+·2Cl?·2ClO4?·0.132H2O, is shown to be protonated at all the pyridine N atoms; the two chloride ions are hydrogen bonded to three pyridine N atoms and to the phenolic O atom of the same cation [Cl?N = 3.045 (2)–3.131 (2) Å and Cl?O = 2.938 (2) Å], and the remaining pyridine N atom is hydrogen bonded to the phenolic O atom [N?O = 2.861 (2) Å]. The mean value of the C—N—C angle of the protonated pyridine rings is 123.4 (1)°, which is significantly larger than that found for unprotonated pyridine rings.  相似文献   

14.
In the title compound, C36H25F6O2P2+·I3, hydrogen‐bonded [{(p‐FC6H4)3PO}2H]+ dimers assemble along the crystallographic c axis to form channels that house extended chains of triiodide anions. Although the I—I bond lengths of 2.9452 (14) and 2.9023 (15) Å are typical, the inter‐ion I...I distance of 3.5774 (10) Å is unusually short. A posteriori modelling of nonmerohedral twinning about (100) has been only partially successful, achieving a reduction in the maximum residual electron density from 5.28 to 3.24 e Å−3. The inclusion of two low‐occupancy I‐atom sites (total 1.7%), which can be interpreted as translational disorder of the triiodide anions along the channels, reduced the maximum residual electron density to 2.03 e Å−3. The minor fractional contribution volume of the nonmerohedral twin domains refined to 0.24 and simultaneous refinement of the inversion twin domains showed the crystal to be a 0.5:0.5 inversion twin.  相似文献   

15.
ChemInform is a weekly Abstracting Service, delivering concise information at a glance that was extracted from about 200 leading journals. To access a ChemInform Abstract of an article which was published elsewhere, please select a “Full Text” option. The original article is trackable via the “References” option.  相似文献   

16.
Reaction of the ligand 2, 2′‐diamino‐4, 4′‐bithiazole (DABTZ) with Zn(ClO4)2, CdCl2, and Hg(SCN)2 gives complexes with composition [Zn(DABTZ)2](ClO4)2, [Cd(DABTZ)2Cl2], and [Hg(DABTZ)(SCN)2]. The complexes were characterized by elemental analyses and infrared spectroscopy. The crystal structure of the [Hg(DABTZ)(SCN)2] was determined by X‐ray crystallography. The complex is built up of a monomeric Hg(SCN)2 unit with one 2, 2′‐diamino‐4, 4′‐bithiazole ligand coordinated to the Hg atom via the two N atoms giving rise to a five‐member chelate ring in a distorted tetrahedral environment. There is π‐π stacking interaction between the parallel aromatic rings belonging to adjacent chain as planar species in which the mean molecular planes are close to parallel and separated by a distance of ~ 3.5Å, close to that of the planes in graphite. The coordinated 2, 2′‐diamino‐4, 4′‐bithiazole molecule is involved in hydrogen bonding acting as hydrogen‐bond donors with N atoms from the SCN ligand as potential hydrogen‐bond acceptors. The hydrogen bonding yields infinite chains parallel to the crystallographic vectors a and b. Each molecule is bonded to three neighbours. Both amine H atoms are hydrogen bonded to N atoms.  相似文献   

17.
[Hg(sulfamethoxazolato)2]·2DMSO ( 1 ) and [Cu2(CH3COO)4(sulfa‐methoxazole)2] ( 2 ) can be obtained by the reaction of sulfamethoxazole with mercury acetate or copper acetate in methanol. The structures of the two complexes were characterized by single crystal X—ray diffractometry. Compound 1 consists of sulfamethoxazolato ligands bridging the metal ions building an unidimensional chain. Two solvent dimethylsulfoxide molecules are involved via N‐H···O hydrogen bridges. The mercury atom shows a linear primary coordination arrangement formed by two trans deprotonated sulfonamidic nitrogen atoms. The overall coordination around the metal atom may be regarded as a strongly distorted octahedron when the interactions of mercury with four sulfonamidic oxygen atoms [bond distances of 2.761(4) Å—2.971(4) Å] are also considered to build an equatorial plane and the N1 and N1′ atoms [bond distance of 2.037(5) Å] occupy the apical positions. Compound 2 is a dinuclear complex in which the copper ions are bridged by four syn‐syn acetate ligands which are related by a symmetry centre located in the centre of the complex. Each copper atom presents a nearly octahedral coordination where the equatorial plane is formed by four oxygen atoms and an isoxazolic nitrogen atom and the second copper atom occupy the apical positions.  相似文献   

18.
Synthesis and Spectroscopic Characterization of [Rh(SeCN)6]3– and trans ‐[Rh(CN)2(SeCN)4]3–, Crystal Structure of (Me4N)3[Rh(SeCN)6] Treatment of RhCl3 with KSeCN in acetone yields a mixture of selenocyanato‐rhodates(III), from which [Rh(SeCN)6]3– and trans‐[Rh(CN)2(SeCN)4]3– have been isolated by ion exchange chromatography on diethylaminoethyl cellulose. The X‐ray structure determination on a single crystal of (Me4N)3[Rh(SeCN)6] (trigonal, space group R3, a = 14.997(2), c = 24.437(3) Å, Z = 6) reveals, that the compound crystallizes isotypically to (Me4N)3[Ir(SCN)6]. The exclusively via Se coordinated selenocyanato ligands are bonded with the average Rh–Se distance of 2.490 Å and the Rh–Se–C angle of 104.6°. In the low temperature IR and Raman spectra the metal ligand stretching modes ν(RhSe) of (n‐Bu4N)3[Rh(SeCN)6] ( 1 ) and trans‐(n‐Bu4N)3[Rh(CN)2(SeCN)4] ( 2 ) are in the range of 170–250 cm–1. In 2 νas(CRhC) is observed at 479 cm–1. The vibrational spectra are assigned by normal coordinate analysis based on the molecular parameters of the X‐ray determination. The valence force constants are fd(RhSe) = 1.08 ( 1 ), 1.10 ( 2 ) and fd(RhC) = 3.14 mdyn/Å ( 2 ). fd(RhS) = 1.32 mdyn/Å is determined for [Rh(SCN)6]3–, which has not been calculated so far. The 103Rh NMR resonances are 2287 ( 1 ), 1680 ppm ( 2 ) and the 77Se NMR resonances are –32.7 ( 1 ) and –110.7 ppm ( 2 ). The Rh–C bonding of the cyano ligand in 2 is confirmed by a dublett in the 13C NMR spectrum at 136.3 ppm.  相似文献   

19.
Solvothermal reactions of Cu2(OH)2CO3 with 1,3‐bis(pyridin‐4‐yl)propane (bpp) in the presence of aqueous ammonia in 4‐iodotoluene/CH3CN or 1,4‐diiodobenzene/CH3CN afforded two [Cu2I2]‐based coordination polymers, namely catena‐poly[[[di‐μ‐iodido‐dicopper(I)]‐bis[μ‐1,3‐bis(pyridin‐4‐yl)propane‐κ2N:N′]] p‐toluidine tetrasolvate], {[Cu2I2(C13H14N2)2]·4C7H9N}n, (I), and the analogous 1,4‐diiodobenzene monosolvate, {[Cu2I2(C13H14N2)2]·C6H4I2}n, (II). The [Cu2I2] unit of (I) lies on a centre of symmetry at the mid‐point of the two I atoms, while that of (II) has a twofold axis running through the I...I line. In (I) and (II), each Cu centre is tetrahedrally coordinated by two μ‐I and two N atoms from two different bpp ligands. Each rhomboid [Cu2I2] unit can be considered as a four‐connecting node linked to the symmetry‐related [Cu2I2] units via two pairs of bpp ligands to form a one‐dimensional double chain along the c axis. The dimensions of the [Cu2I2(bpp)2]2 rings in (I) and (II) are different, which may be due to the presence of different guest solvent molecules in the structures. In (I), one p‐toluidine molecule, derived from an Ullmann coupling reaction of 4‐iodotoluene with ammonia, interacts with the [Cu2I2] cluster fragment through N—H...I hydrogen bonds, while the two p‐toluidine molecules interact via N—H...N hydrogen bonds. In (II), two I atoms of each 1,4‐diiodobenzene molecule are linked to the I atoms of the [Cu2I2] fragments from a neighbouring chain via I...I secondary interactions.  相似文献   

20.
Two twisted 1,2‐bis(2‐pyridyl)­ethyne ligands bridge two Cd2+ centers in the C2‐symmetric title complex, [Cd2(NO3)4(μ‐C12H8N2)2(H2O)2]. The bridging ligands arch across one another creating a `zigzag loop' molecular geometry. Two nitrate ions and a water mol­ecule complete the irregular seven‐coordinate Cd‐atom environment. The dihedral angles between the equivalent pyridyl ring planes of the two independent ligands are 67.2 (1)°. Owater—H⃛Onitrate hydrogen bonding creates two‐dimensional layers parallel to the ab plane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号