首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
In the present work, the effect of adding nonsolvent in the casting solution on the porosity of asymmetric TPX (poly(4-methyl-1-pentene)) membranes was systematically investigated. A series of alcohols, with carbon number ranging from 2 to 14, was added in the casting solution (TPX/cyclohexane) to alter the porosity of two types of asymmetric TPX membranes, prepared by using ethanol and 1-propanol as the coagulation medium. It was found that the effect of nonsolvent on membrane porosity is different for the two types of membranes and the difference can be reasoned by considering the exchange rate between the polymer solvent and the coagulation medium during membrane formation. The results indicate that, for the membrane formation system with low exchange rate between coagulant and solvent, the membrane porosity is controlled by the coagulation value, defined as the volume of coagulant required to demix the casting solution. On the other hand, for the system with high exchange rate, the membrane porosity is not controlled by the coagulation value but by the penetration speed of the coagulant front moving through the casting solution.  相似文献   

2.
The separation performance of plasticizer/polysulfone (TGN/PSF) pervaporation membrane was studied. The optimum amount of plasticizer (TGN) in PSF membranes improved the diffusion selectivity of water to ethanol, which was due to the increase in the permeate diffusion rate difference between water to ethanol molecules. On the other hand, the solubility selectivity of water to ethanol in PSF membrane showed a minor change with increasing the plasticizer content in TGN/PSF membrane. The feed ethanol concentration showed a significant influence on the degree of swelling as well as the separation performance of TGN/PSF membrane. It was found that the dominant factor of permeate transport through membranes was the diffusion rate difference, especially at high ethanol concentrations in feed. This study indicated that a good separation performance could be achieved at high ethanol concentrations in feed. This investigation also proves that the flexible polymer chain mobility, which was due to both the addition of TGN in the membrane and the swelling effect of the membrane at the high ethanol concentration in feed solution, strongly influences the separation properties of TGN/PSF membrane.  相似文献   

3.
To investigate the effect of poly(ethylene glycol) (PEG) 200 on membrane performance, asymmetric polyetherimide (PEI) membranes with a small pore size were prepared by dry/wet-phase inversion from the casting solution containing N-methyl-2-pyrrolidone as a solvent and poly(ethylene glycol) 200 as an additive. Our experiment revealed that the addition of PEG 200 has an influence on the casting solution properties, permeation properties, and resulting membrane structures. Moreover, a drying process also affects the formation of a dense skin layer. Increasing the amount of PEG 200 drastically improved the solute rejection rate. The drying process improved the rejection rate. We also observed the effect of the mixed solvent (water/ethanol) on permeation through the membranes with various pore sizes. In the case of the membrane with a dense skin layer, the solvent permeation showed relationships with solution viscosity, surface tension, and membrane-solvent interaction.  相似文献   

4.
To confirm the validity of the working assumption that a thin dense skin layer in an asymmetric membrane can be essentially replaced by a thick homogeneous dense membrane, both homogeneous and asymmetric polysulfone membranes were prepared by solvent casting, and the permeation behavior of carbon dioxide through these two types of membranes was investigated. The pressure dependence of the mean permeability coefficient through an asymmetric polysulfone membrane is apparently very similar to that through a homogeneous dense membrane, following the dual mode mobility model driven by gradients of chemical potential. The dense skin layer in the asymmetric membrane can be simulated approximately by a homogeneous dense membrane from the point of view of gas sorption and diffusion.  相似文献   

5.
We synthesized the isomeric polyimides, 6FDA-m-DDS and 6FDA-p-DDS, and investigated the gas selectivity of the asymmetric polyimide membranes with an oriented surface skin layer. Particularly, we focused on the effect of the chemical structure of the polyimide on the molecular orientation. The asymmetric membranes with the oriented skin layer were prepared by a dry–wet phase inversion process at different shear stresses. The gas permeances of the asymmetric polyimide membranes were measured using a high vacuum apparatus with a Baratron absolute pressure gauge at 76 cmHg. The molecular orientation in the asymmetric polyimide membranes was measured using polarized ATR–FTIR spectroscopy. The gas selectivity of the asymmetric 6FDA-m-DDS membrane increased with an increased in the shear stress and were greater than that of the dense membrane. In contrast, the gas selectivities of the asymmetric 6FDA-p-DDS membrane did not depend on the shear stress and were similar to those of the dense membrane. We clarified that a parallel oriented surface formed on the asymmetric 6FDA-m-DDS membrane caused the enhanced gas selectivity of the membrane.  相似文献   

6.
This paper reports on the separation of ethanol—water mixtures using pervaporation for several membrane types. The FT30 and RC100 membranes pass ethanol selectively at feed concentrations similar to fermentation beers, and the FT30 membrane continues to pass ethanol selectively at higher ethanol feed concentrations. As the ethanol concentration in the feed increases, the ethanol selectivity of both the FT30 and RC100 membranes decreases; near the ethanol—water azeotrope, both membranes pass water selectively. At lower ethanol concentrations, the selectivity of the FT30 membrane increases as the feed temperature increases above 23°C.  相似文献   

7.
In this article, we have reported the influence of alcohol as a casting solution on the structure and the gas permeability of asymmetric polyimide membranes made by dry–wet phase inversion. The apparent skin layer thickness of the asymmetric membrane decreased with an increase in molecular weight of the alcohol, and the thicknesses of the membranes made from methanol, ethanol, propanol, and butanol were 250, 120, 61, and 31 nm, respectively. We found that χ12 as an interaction parameter of solvent–nonsolvent had a significant influence on the phase inversion occurring in the coagulant medium. On the other hand, the gas permeance and the gas selectivity in the asymmetric membranes increased with the increasing molecular weight of the alcohol. We believe that a more packed structure formed in the asymmetric polyimide membrane with a thinner surface skin layer is also responsible for the thickness‐dependence of the gas selectivity obtained in this study. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 2739–2746, 2007  相似文献   

8.
Asymmetric polysulfone membranes were prepared by wet phase inversion method with different demixing rate of casting solutions. The influent factor of demixing rate was focused on the polarity of additive in the polysulfone/N-methyl-2-pyrrolidone/water ternary system. With increasing the polarity of alcohols in the casting solution, the decrease in skin layer thickness was observed and then a poor separation performance of membranes can be obtained. It was found that the polar additive caused the rapidly demixing of casting solution in coagulation bath and formed porous asymmetric membranes with defective skin layer. In the other case, chloroform was used as the non-polar additive in casting solution. With increasing the mount of chloroform in the casting solution, the increase in skin layer thickness was observed and then lead to a good separation performance of these membranes. It was found that of the non-polar additive delays the demixing rate of casting solution in this ternary system. The separation performance of these asymmetric membranes were characterized by the measurement of dehydration of ethanol/water mixture by pervaporation and observed the morphology by scanning electron microscopy. It was found that the separation performance of asymmetric polysulfone membrane strongly depends on the polarity of adding solvent in polysulfone/N-methyl-2-pyrrolidone/water ternary system.  相似文献   

9.
Integrally skinned asymmetric poly(vinylidene fluoride) hollow fibre membranes were prepared and characterized. The effects of phase inversion methods (dry-wet or wet) and spinning conditions, such as the type of solvent (NMP, DMAc), the concentration of polymer in dope solution, temperature of the external coagulation bath and the composition of the inner coagulant on the morphology and on the formation of a dense skin layer were investigated. The structure of the membranes was analyzed by scanning electron microscopy and the gas permeation properties with six different gases (He, H2, N2, O2, CH4 and CO2) were measured at 25 °C to confirm the integrity of the selective skin layer. Under the proper conditions highly selective and permeable PVDF hollow fibre membranes were thus obtained by dry-wet spinning of a 30 wt.% PVDF solution in DMAc, using hot water (50 °C) as the external coagulant and a bore fluid of pure water as the internal coagulant. The best membrane had a selective outer skin with an effective thickness of approximately 0.2 μm. The ideal selectivity of the hollow fibres approached or even exceeded the intrinsic ideal selectivity of a dense PVDF film, for instance the selectivity for He over N2 was 86.2 for the hollow fibre, whereas it was 83.5 for a dense PVDF reference film. DSC and FT-IR/ATR analysis indicated a higher fraction of the β-crystal phase in the selective skin and a high overall crystallinity than in the melt-processed film. The latter explains the relatively high selectivity and low permeability of the membranes. Intrinsic polymer properties make the membranes also suitable for vapour transport than for gas separation.  相似文献   

10.
In the present work we use a membrane contactor for the separation of CO2 from CH4 and we systematically investigate the influence of both the type of membrane and the different process parameters on the overall process performance (permeability and selectivity). This work is important because it reports real process performance data (permeances and selectivities) for the total process consisting of absorption and desorption under practical conditions using feed mixtures. Commercially available porous PP hollow fiber membranes and asymmetric PPO hollow fiber membranes have been applied and MEA was used as absorption liquid in the membrane contactor. The proposed approach allows us to identify the operating window and potential of the process. Although the performance of the PP membranes outperforms the performance of the PPO membranes in terms of productivity and selectivity, the PP fibers are extremely sensitive to only small variations in the feed pressure, resulting in severe performance loss. In addition to that, extremely high liquid losses are observed for the PP fibers especially at elevated temperatures. Factors that are significantly reduced when asymmetric PPO membranes with a dense, ultrathin top layer are used, which thus improves the performance and significantly increases the operating window and potential of the membrane contactor process.  相似文献   

11.
Flat sheet asymmetric reverse osmosis membranes were successfully prepared from N,N-dimethylacetamide (DMAc) solutions of a series of novel wholly aromatic polyamide-hydrazides that contained different amounts of para- and meta-phenylene rings. These polyamide-hydrazides were synthesized by a low temperature solution polycondensation reactions of either 4-amino-3-hydroxybenzhydrazide or 3-amino-4-hydroxybenzhydrazide with an equimolar amount of either terephthaloyl dichloride [TCl], isophthaloyl dichloride [ICl] or mixtures of various molar ratios of TCl and ICl in anhydrous DMAc as a solvent. All the polymers have the same structural formula except of the way of linking phenylene units inside the polymer chains. The content of para- to meta-phenylene moieties was varied within these polymers so that the changes in the latter were 10 mol% from polymer to polymer, starting from an overall content of 0-100 mol%. All the membranes were characterized for their salt rejection (%) and water permeability (cm3 cm−2 day−1) of 0.5 N aqueous sodium chloride feed solution at 3924 kPa operating pressure. The effects of polymers structural variations together with several processing parameters to achieve the best combination of high selectivity and permeability were studied. Effects of various processing parameters of the membranes on their transport properties were investigated by varying the temperature and period of the solvent evaporation of the cast membranes, coagulation temperature of the thermally treated membranes, annealing of the coagulated membranes, casting solution composition, membrane thickness and the operating pressure. During the thermal treatment step, the asymmetric structure of the membranes with a thin dense skin surface layer supported on a more porous layer was established. The former layer seems to be responsible for the separation performance. The results obtained showed that membrane performance was very much influenced by all of the examined processing variables and that membranes with considerably different properties could be obtained from the same polymer sample by using different processing parameters. Thus, the use of higher temperatures and longer exposure times in the protomembrane forming thermal treatment step would result in a membrane of lower solvent content and with a thicker skin layer and consequently led to higher salt rejection at lower water permeability. Most significantly, the membrane properties clearly depended on the polymer structure. Under identical processing condition, substitution para-phenylene rings for meta-phenylene ones within the polymer series resulted in an increase in salt rejection capability of the membranes. This may be attributed to an increase in their chain symmetry associated with increased molecular packing and rigidity through enhanced intermolecular hydrogen bonding. This produces a barrier with much smaller pores that would efficiently prevent the solute particles from penetration. Coagulation temperature controls the structure (porosity) of the membrane particularly its supported layer and consequently its water permeability. Moreover, annealing of the prepared membranes in deionized water at 100 °C was found essential for useful properties in the single-stage separation applications, which required optimum membrane selectivity. Upon annealing, the membrane shrinks resulting in reducing its pore size particularly in the skin layer and consequently improving the salt rejection. Addition of lithium chloride to the casting solution produced a membrane with increased porosity and improved water permeability. Salt rejection capability of the membranes is clearly affected by the applied pressure, reaching its maximum at nearly 4000 kPa. Furthermore, the water permeability is inversely proportional to the membrane thickness, while the salt rejection is not substantially influenced.  相似文献   

12.
丙烯酸交联壳聚糖渗透汽化膜研究(Ⅱ)──乙醇/水混合液的渗透汽化分离性能钟伟,李文俊,葛昌杰,陈新(复旦大学高分子科学系,上海,200433)关键词交联壳聚糖,渗透汽化,丙烯酸,乙醇/水混合液混合液体的渗透汽化(简称PV)膜分离自80年代实现工业化以...  相似文献   

13.
Separation of water–ethanol mixture through a membrane was carried out by pervaporation using a membrane which provided a hydrogen-bonding interaction. A membrane obtained from poly(acrylic acid-co-acrylonitrile) was effective for a selective separation of water from aqueous ethanol solution by pervaporation technique. Spectroscopic and flux analyses verified that this high selectivity toward water was attributed to the hydrogen-bonding interaction between water and acrylic acid (carboxylic acid) unit in the membrane. On the other hand, a membrane from poly(acrylic acid-co-styrene) preferentially permeated ethanol in the low water feed concentration region.  相似文献   

14.
Using a dry/wet spinning process, asymmetric cellulose hollow fiber membranes (CHFM) were prepared from a dope composed of cellulose/N-methylmorpholine-N-oxide/water. The formation mechanism for the finger-like macrovoids at the inner portion of as-spun fibers was explained. Naturally drying and three solvent exchange drying methods were tried to investigate their influence on morphology and properties of CHFM. It was found that the ethanol–hexane exchange drying was an appropriate method to minimize morphology change of the as-spun CHFM, whereas the naturally drying caused the greatest shrinkage of the fibers that made the porous membrane become dense. As a result, CHFM from ethanol–hexane exchange drying performed the highest gas permeation rate but gas permeation of the naturally dried membrane could not be detectable. The resultant CHFM from the ethanol–hexane exchange drying also showed acceptable mechanical properties, thus it was proposed to be an appropriate method for gas separation purpose. The experimental results supported the proposed drying mechanism of CHFM. The free water would evaporate or be replaced by a solvent that subsequently would evaporate but the bonded water would remain in the membrane. What dominated the changes of membrane morphology during drying should be the molecular affinities of cellulose–water, water–solvent and solvent–solvent.  相似文献   

15.
Composite hydrophilic pervaporation membranes were prepared from chitosan blended with hydroxyethylcellulose using cellulose acetate as a porous support. The membranes were tested for dehydration performance of ethanol–water mixtures of ethanol concentrations 70–95 wt.% in the laminar flow region, at temperatures 50–70°C and at permeate pressures of 3–30 mmHg. The composite membrane showed an improved dehydration performance compared with dense CS/HEC membrane developed earlier. The effects of operating conditions also revealed that pervaporation of low water content feed carried out at high feed flow rate and at low temperature and permeate pressure was an advantage.  相似文献   

16.
This paper presents an original approach to prepare the asymmetric sulfonated polysulfone membranes by using wet phase inversion method and their applications for dehydrating a water/ethanol mixture by pervaporation. The separation performances of sulfonated membranes were strongly affected by the degree of sulfonation and the degree of swelling of membranes. The substitution degree of sulfonic group enhanced the permselectivity of sulfonated polysulfone membranes by increasing the hydrophilicity of polymer backbone. Based on the observations of membrane morphology and light transmittance measurements, the degree of sulfonation of polysulfone presented less influence on the membrane formation pathway and the final structure of membrane in wet phase inversion process. It was also found that the sulfonated membranes showed well hydrophilic properties and facilitated water adsorption in the membranes. The sorption and permeation properties also showed that the permselectivity of asymmetric membrane was dominated by the permeate diffusion rather than the permeate sorption in the skin layer. The high separation performance of pervaporation membrane can be achieved by phase inverse method with sulfonated polysulfone.  相似文献   

17.
A poly[1-(trimethylsilyl)-1-propyne] membrane was studied in a thermopervaporation process for ethanol recovery from fermentation media. Four commercial composite membranes based on polysiloxanes (Pervap 4060, Pervatech PDMS, PolyAn, and MDK-3) were studied for comparison. The dependences of the permeate flux, permeate concentration, separation factor, and pervaporation separation index on the temperature of the feed mixture (5 wt % ethanol in water) were obtained. The maximal values of the ethanol concentration in the permeate (35 wt %) and separation factor (10.2) were obtained for the poly[1-(trimethylsilyl)-1-propyne] membrane, whereas the PolyAn membrane provided the highest permeate flux (5.4 kg m–2 h–1). The ethanol/ water separation factor for the systems studied has a maximum at 60°С; this temperature of the feed mixture is optimum for recovering ethanol from aqueous media by thermopervaporation. The existing membranes based on polysiloxanes show low ethanol–water selectivity (less than 1). Poly[1-(trimethylsilyl)-1-propyne] membranes are the most promising for recovering bioethanol from fermentation mixtures by thermopervaporation, because they showed the highest selectivity to ethanol.  相似文献   

18.
新型复合膜优先透醇性能的研究   总被引:1,自引:0,他引:1  
有机物优先透过膜不仅可以用于有机物的浓缩和回收,还可以用于污水的净化等,因而有机物优先透过型渗透蒸发膜的研究倍受重视[1].但由于透醇型膜的研究起步较晚,以及膜材料选择和膜制备等诸多原因,致使透醇膜的研究进展缓慢.  相似文献   

19.
Poly(1-trimethylsilyl-1-propyne)/poly(dimethylsiloxane) (PTMSP/PDMS) graft copolymer was prepared to evaluate the permeation characteristic at pervaporation of aqueous ethanol solution through the graft copolymer membrane. For the preparation of PTMSP/PDMS graft copolymer, an improved synthetic procedure was released in this paper, which comprised a one-pot reaction of PTMSP in lithium bis(trimethylsilyl)amide followed by treatment with hexamethylcyclotrisiloxane and trimethylchlorosilane. PDMS content of the graft copolymer was controlled in the range 5–74 mol%. Very tough and thin membranes could be prepared from these copolymers having various PDMS content by the solvent casting method. The permselectivity of the membranes was investigated by pervaporation of ethanol/water mixture at 30°C. Preferential permeation of ethanol was observed for the membranes. It was also found that the selectivity of every copolymer membrane was higher than that of the PTMSP membrane. Moreover, the selectivity depended on the PDMS content of the graft copolymer. The separation factor and permeation rate assumed the maximum values at 12 mol% PDMS content. At the maximum point, 7 wt% aqueous ethanol solution was concentrated to about 70 wt% ethanol solution, and the separation factor and permeation rate were 28.3 and 2.45 × 10?3g · m/m2 · h, respectively. Such a high permselectivity for ethanol might be due to a delicate alteration of membrane structure, which was induced by the introduction of a short PDMS side chain into a PTMSP backbone.  相似文献   

20.
An asymmetric mixed-conducting membrane consists of a thin dense layer and a porous support, and its application has drawn considerable attention, because it is expected to have a more promising potential in the practical application compared with the symmetric membrane. However, with the introduction of support in the asymmetric membrane, two possible permeation modes are produced. One mode is that oxygen permeates from the support to the thin dense layer (designated as SD mode). The other is in the direction from the thin dense layer to the support (designated as DS mode). Thus, from the viewpoint of choosing an appropriate oxygen permeation mode to make better use of the membrane, it is necessary to study the oxygen flux in these two modes. In this paper, their effects on the oxygen flux of asymmetric membranes were investigated from the experiment and the model. The modeling results showed a good agreement with the experimental data. Our study demonstrates that when the asymmetric membrane adopts the SD mode, it is beneficial for the membrane to obtain higher oxygen permeation flux.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号