首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Syntheses, Structures, Electrochemistry and Optical Properties of Alkyne‐Functionalized 1,3,2‐Diazaboroles and 1,3,2‐Diazaborolidenes The reaction of 2‐bromo‐1,3‐ditert‐butyl‐2,3‐dihydro‐1H‐1,3,2‐diazaborole ( 3 ) with lithiated tert‐butyl‐acetylene and lithiated phenylacetylene affords the 2‐alkynyl‐functionalized 1,3,2‐diazaboroles 4 and 5 as a thermolabile colorless oil ( 4 ) or a solid ( 5 ). Similarly 2‐bromo‐1,3‐diethyl‐2,3‐dihydro‐1H‐1,3,2‐benzodiazaborole ( 6 ) was converted into the crystalline 2‐alkynyl‐benzo‐1,3,2‐diazaboroles 7 and 8 by treatment with LiC≡C–tBu or LiC≡CPh, respectively. 2‐Ethynyl‐1,3‐ditert‐butyl‐2,3‐dihydro‐1H‐1,3,2‐diazaborole ( 2 ) was metalated with tert‐butyl‐lithium and subsequently coupled with 2‐bromo‐1,3,‐ditert‐butyl‐2,3‐dihydro‐1H‐1,3,2‐diazaborole ( 3 ) to afford bis(1,3‐ditert‐butyl‐2,3‐dihydro‐1H‐1,3,2‐diazaborol‐2‐yl)acetylene ( 9 ) as thermolabile colorless crystals. Analogously coupling of the lithiated species with 6 or with 2‐bromo‐1,3‐ditert‐butyl‐1,3,2‐diazaborolidine ( 11 ) gave the unsymmetrically substituted acetylenes 10 or 12 , respectively, as colorless solids. Compounds 4 , 5 , 7 – 10 and 12 are characterized by elemental analyses and spectroscopy (IR, 1H‐, 11B{1H}, 13C{1H}‐NMR, MS). The molecular structures of 5 , 8 and 9 were elucidated by X‐ray diffraction analyses.  相似文献   

2.
A new Azo‐Schiff base ligand L was prepared by reaction of m‐hydroxy benzoic acid with (Schiff base B) of 3‐[2‐(1H–indol‐3‐yl)‐ethylimino]‐1.5‐dimethyl‐2‐phenyl‐2,3‐dihydro‐1H‐pyrazol‐4‐ylamine. This synthesized ligand was used for complexation with different metal ions like Ni(II), Co(II), Pd(II) and Pt(IV) by using a molar ratio of ligand: metal as 1:1. Resulted compounds were characterized by NMR (1H and 13C), UV–vis spectroscopy, TGA, FT‐IR, MS, elemental analysis, magnetic moment and molar conductivity studies. The activation thermodynamic parameters, such as ΔE*, ΔH*, ΔS*, ΔG*and K are calculated from the TGA curves using Coats ‐ Redfern method. Hyper Chem‐8 program has been used to predict structural geometries of compounds in gas phase. The biological activities of Schiff base and its complexes had been tested in vitro against, two Gram positive bacteria (Bacillus subtillis and Staphylococcus aureus) and two Gram negative bacteria (Escherichia coli and Pseudomonas aeruguinosa).  相似文献   

3.
The 31P chemical shift (CS) tensors of the 1,3,2‐diazaphospholenium cation 1 and the P‐chloro‐1,3,2‐diazaphospholenes 2 and 3 and the 31P and 19F CS tensors of the P‐fluoro‐1,3,2‐diazaphospholene 4 were characterized by solid‐state 31P and 19F NMR studies and quantum chemical model calculations. The computed orientation of the principal axes system of the 31P and 19F CS tensors in the P‐fluoro compound was found to be in good agreement with experimentally derived values obtained from evaluation of P–F dipolar interactions. A comparison of the trends in the chemical shifts of 1 – 4 with further available literature data confirms that the unique high shielding of δ11 in the cation 1 can be related to the effective π‐conjugation in the five‐membered heterocycle, and that a further systematic decrease in δ11 for the P‐halogen derivatives 2 – 4 is attributable to the increased perturbation of the π‐electron distribution by interaction with the halide donor. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

4.
The reaction of α‐keto‐stabilized diphosphine ylides [Ph2P(CH2)nPPh2═C(H)C(O)C6H4p‐CN] (n = 1 (Y1); n = 2 (Y2)) with dibromo(1,5‐cyclooctadiene) palladium(II)/platinum(II) complexes, [Pd/PtBr2(cod)], in equimolar ratio gave the new cyclometalated Pd(II) and Pt(II) complexes [Br2Pd(κ2‐Y1)] ( 1 ), [Br2Pt(κ2‐Y1)] ( 2 ), [Br2Pd(κ2‐Y2)] ( 3 ) and [Br2Pt(κ2‐Y2)] ( 4 ). These compounds were screened in a search for novel antibacterial agents and characterized successfully using Fourier transfer infrared and NMR (1H, 13C and 31P) spectroscopic methods. Also, the structures of complexes 1 and 2 were characterized using X‐ray crystallography. The results showed that the P,C‐chelated complexes 1 and 2 have structures consisting of five‐membered rings, while 3 and 4 have six‐membered rings, formed by coordination of the ligand through the phosphine group and the ylidic carbon atom to the metal centre. Also, a theoretical study of the structures of complexes 1 – 4 was conducted at the BP86/def2‐SVP level of theory. The nature of metal–ligand bonds in the complexes was investigated using energy decomposition analyses (EDA) and extended transition state combined with natural orbitals for chemical valence analyses. The results of EDA confirmed that the main portions of ΔEint, about 57–58%, in the complexes are allocated to ΔEelstat.  相似文献   

5.
Syntheses of 2‐aryloxy/2‐chloro ethoxy‐2,3‐dihydro‐5‐benzoyl‐1H‐1,3,2‐benzodiaza‐phosphole 2‐oxides 3a–h were accomplished by reactions of equimolar quantities of 3,4‐diaminobenzophenone ( 1 ) with various aryl/chloroethoxy phosphorodichloridates 2a–g and 2h in the presence of triethylamine at 50–60°C. Compounds 3i–k were prepared by reacting 3,4‐diaminobenzophenone ( 1 ) with aryl thiophosphorodichloridates 2i–k under similar conditions. They were characterized by IR, 1H, 13C, and 31P NMR spectral data. Some of these products possessed siginificant antimicrobial activity © 2002 Wiley Periodicals, Inc. Heteroatom Chem 13:340–345, 2002; Published online in Wiley Interscience (www.interscience.wiley.com). DOI 10.1002/hc.10044  相似文献   

6.
Synthesis and Reactivity of 2‐Bromo‐1,3‐diethyl‐2,3‐dihydro‐1 H ‐1,3,2‐benzodiazaborole Molecular Structure of Bis(1,3‐diethyl‐2,3‐dihydro‐1 H ‐1,3,2‐benzodiazaborol‐2‐yl The reaction of a slurry of calcium hydride in toluene with N,N′‐diethyl‐o‐phenylenediamine ( 1 ) and boron tribromide affords 2‐bromo‐1,3‐diethyl‐2,3‐dihydro‐1 H‐1,3,2‐benzodiazaborol ( 2 ) as a colorless oil. Compound 2 is converted into 2‐cyano‐1,3‐diethyl‐2,3‐dihydro‐1 H‐1,3,2‐benzodiazaborole ( 3 ) by treatment with silver cyanide in acetonitrile. Reaction of 2 with an equimolar amount of methyllithium affords 1,3‐diethyl‐2‐methyl‐2,3‐dihydro‐1 H‐1,3,2‐benzodiazaborole ( 4 ). 1,3,2‐Benzodiazaborole is smoothly reduced by a potassium‐sodium alloy to yield bis(1,3‐diethyl‐2,3‐dihydro‐1 H‐1,3,2‐benzodiazaborol‐2‐yl] ( 7 ), which crystallizes from n‐pentane as colorless needles. Compound 7 is also obtained from the reaction of 2 and LiSnMe3 instead of the expected 2‐trimethylstannyl‐1,3,2‐benzodiazaborole. N,N′‐Bis(1,3‐diethyl‐2,3‐dihydro‐1 H‐1,3,2‐benzodiazaborol‐2‐ yl)‐1,2‐diamino‐ethane ( 6 ) results from the reaction of 2 with Li(en)C≡CH as the only boron containing product. Compounds 2 – 4 , 6 and 7 are characterized by means of elemental analyses and spectroscopy (IR, 1H‐, 11B{1H}‐, 13C{1H}‐NMR, MS). The molecular structure of 7 was elucidated by X‐ray diffraction analysis.  相似文献   

7.
The interaction of gold(III) complexes, [Au(cis‐DACH)Cl2]Cl and [Au(cis‐DACH)2]Cl3 complexes (DACH = cis‐1,2‐diaminocyclohexane), with 13C, 15N‐enriched thiourea (Tu) and 1,3‐diazinane‐2‐thione ligands was investigated. The progress of these reactions was monitored by NMR (1H, 13C, and 15N) and UV–vis spectroscopy as well as square wave stripping voltammetry. The kinetic studies of the substitution reactions between the above‐mentioned complexes with thiones in aqueous solutions containing 30 mM KCl, which is used to suppress the hydrolysis of the chloride complexes, were conducted. These reactions were followed under pseudo–first‐order conditions as functions of ligand concentration, pH, and temperature. The activation parameters (ΔH#, ΔS#) were calculated from Eyring plots, and the negative values of ΔS lend support for an associative mechanism. The kinetic data also indicated a relatively higher reactivity of [Au(cis‐DACH)Cl2]Cl than that of [Au(cis‐DACH)2]Cl3 toward the thiones.  相似文献   

8.
Three new complexes: [M(L)(H2O)] [M = Zn ( 1 ), Co ( 2 ), Ni ( 3 ); H2L = 5‐(pyridin‐2‐ylmethyl)aminoisophthalic acid] were synthesized under hydrothermal conditions at 180 °C and were characterized by elemental analysis, FT‐IR spectroscopy, single‐crystal X‐ray diffraction, and thermogravimetric analysis (TGA). The results of X‐ray diffraction analysis reveal that complexes 1 – 3 are isostructural and crystallize in the monoclinic system with space group P21/c. Each of the complexes displays a (3,3′)‐connected two‐dimensional (2D) wave‐like network with (4,82) topology, within which five‐membered uncoplanar N,N‐chelated metallacycles are shaped. Delicate N–H ··· O and O–H ··· O hydrogen bonding interactions exist in complexes 1 – 3 . Adjacent 2D layers are linked by intermolecular interactions, resulting in the construction of extended metal‐organic frameworks (MOFs) in complexes 1 and 2 .  相似文献   

9.
One benzoindole pentamethine cyanine dye was synthesized and characterized by 1H NMR, IR, MS and UV‐Vis spectra. The UV‐Vis absorption and fluorescence spectra of the dye in chloroform, dimethyl sulfoxide, acetone, ethanol and methanol were investigated, and the λmax of the dye was in the region 682.0–689.0 nm with large molar extinction coefficients (? > 105 M?1cm?1) in different solvents. The structure of the dye was also characterized and analyzed by X‐ray diffraction. Crystallographic data revealed that the dye belonged to orthorhombic, with space group P212121, a = 10.059(2) Å, b = 15.098(4) Å, c = 24.989(6) Å, V = 3794.8(15) Å3, Z = 4. The C‐H···F intermolecular hydrogen bonds were displayed in the molecular system, which were effective in the molecular packing. The aggregation behavior and thermodynamic properties of the dye in aqueous methanol solution were also studied by means of UV‐Vis spectroscopy methods. The results indicated that the dye existed monomer‐dimer equilibrium in aqueous methanol solutions. The fundamental properties of the dye, such as the dimeric association constant KD, the dimeric free energy ΔGD, the dimeric entropy ΔSD, and the dimeric enthalpy ΔHD were determined. The ΔHD of the dye was –46.0 kJ mol?1.  相似文献   

10.
在无水乙醇中, 使低水合氯化稀土 (RE = Ho, Er, Tm, Yb, Lu) 与吡咯烷二硫代氨基甲酸铵 (APDC)和1,10-菲咯啉 (o–phen•H2O) 反应, 制得其三元固态配合物. 用化学分析和元素分析确定它的组成为RE(C5H8NS2)3(C12H8N2) (RE = Ho, Er, Tm, Yb, Lu). IR光谱说明RE3+ 分别与3个PDC的6个硫原子双齿配位, 同时与o–phen的2个氮原子双齿配位, 配位数为8. 用精密转动弹热量计测定了它们的恒容燃烧热△cU分别为(-16788.46 ± 7.74), (-15434.53 ± 8.28), (-15287.80 ± 7.31), (-15200.50 ± 7.22)和(-15254.34 ± 6.61) kJ•mol-1; 并计算了它们的标准摩尔燃烧焓△cHmθ和标准摩尔生成焓△fHmθ分别为( -16803.95 ± 7.74), (-15450.02 ± 8.28), (-15303.29 ± 9.28), (-15215.99 ± 7.22), (-15269.83 ± 6.61) kJ • mol-1和 (-1115.42 ± 8.94), (-2477.80 ± 9.15), (-2619.95 ± 10.44), (-2670.17 ± 8.22), (-2650.06 ± 8.49) kJ•mol-1.  相似文献   

11.
Metal Salts of Benzene‐1,2‐di(sulfonyl)amine. 4. Hydrophobically Wrapped Two‐Dimensional Polymers: Crystal Structures of the Isostructural Metal Complexes [M{C6H4(SO2)2N}(H2O)] (M = K, Rb) and of the Structurally Related Ammonium Salt [(NH4){C6H4(SO2)2N}(H2O)] The previously unreported compounds KZ · H2O ( 1 ), RbZ · H2O ( 2 ) and NH4Z · H2O ( 3 ), where Z is Ndeprotonated ortho‐benzenedisulfonimide, are examples of layered inorgano‐organic solids, in which the inorganic component is comprised of metal or ammonium cations, N(SO2)2 groups and water molecules and the outer regions are formed by the planar benzo rings of the anions. The metal complexes 1 and 2 were found to be strictly isostructural, whereas 3 is structurally related to them by a non‐crystallographic mirror plane ( 1 – 3 : monoclinic, space group P21/c, Z = 4; single crystal X‐ray diffraction at low temperatures). In each structure, the five‐membered 1,3,2‐dithiazolide heterocycle possesses an envelope conformation, the N atom lying about 40 pm outside the mean plane of the S–C–C–S moiety. The metal complexes feature two‐dimensional coordination networks interwoven with O–H…O hydrogen bonds originating from the water molecules. The metal centres adopt an irregular nonacoordination formed by five sulfonyl O atoms, two N atoms and two μ2‐bridging water molecules; each M+ is connected to four different anions. When NH4+ is substituted for M+, the metal–ligand bonds are replaced by N+–H…O hydrogen bonds, but the general topology of the lamella is not affected. In the three structures, the lipophilic benzo groups protrude obliquely from the surfaces of the polar lamellae and display marked interlocking between adjacent layers.  相似文献   

12.
Three new coordination compounds, [Pb(HBDC‐I4)2(DMF)4]( 1 ) and [M(BDC‐I4)(MeOH)2(DMF)2]n (M = ZnII for 2 and MnII for ( 3 ) (H2BDC‐I4 = 2, 3, 5, 6‐tetraiodo‐1, 4‐benzenedicarboxylic acid), were synthesized and characterized by elemental analysis, IR spectroscopy, thermogravimetric (TG) analysis, and X‐ray single crystal structure analysis. Single‐crystal X‐ray diffraction reveals that 1 crystallizes in the monoclinic space group C2/c and has a discrete mononuclear structure, which is further assembled to form a two‐dimensional (2D) layer through intermolecular O–H ··· O and C–H ··· O hydrogen bonding interactions. The isostructural compounds 2 and 3 crystallize in the space group P21/c and have similar one‐dimensional (1D) chain structures that are extended into three‐dimensional (3D) supramolecular networks by interchain C–H ··· π interactions. The PbII and ZnII complexes 1 and 2 display similar emissions at 472 nm in the solid state, which essentially are intraligand transitions.  相似文献   

13.
Three lanthanide complexes with the ligand 4‐sulfophthalate (sp3–), [Ln(H2O)2(sp)]n [Ln = Dy ( 1 ), Tb ( 2 ), and Er ( 3 )], were solvo‐/hydrothermally synthesized by changing the rare earth cations, and were characterized structurally and photophysically. Complexes 1 – 3 are isostructural, exhibiting a two‐dimensional layered structure with centrosymmetric dinuclear subunits infinitely extended by 4‐connected sp3– connectors. Photoluminescence spectra of 1 – 3 demonstrate that anionic sp3– ligand can serve as a functionalized chromophore to sensitize the luminescent emission of the lanthanide ion, suggesting that the sp3–‐involved lanthanide complexes can be used as novel optical materials.  相似文献   

14.
The geometry of metal ions (La3+, Ce3+, UO, and Th4+) complexes with 5‐azorhodanine derivatives was optimized at the level of molecular mechanics. Two stoichiometric ratios of metal to ligand (i.e., 1:1 and 1:2) were investigated. Tetracoordinate and hexacoordinate of each stoichiometric ratio have been studied. Effect of substitution in the ligand on the geometry of the complexes was discussed in the light of electron donating–accepting properties of these substituents. The influence of the nuclear effective charge of the central metal ions on the metal–ligand (M–L) bonding was discussed and the effect of the number of ligands on the M–L bond length was also discussed and correlated to the experimental results. The total energies of the different metal complexes were computed using the extended Huckel method. The effect of substituents in ligand, metal type, and stoichiometry of the complexes on the complex total energies were discussed. Stability constant of (La3+, Ce3+, UO, and Th4+) metal ions with 5‐azorhodanine derivaties have been determined potentiometrically in 0.1 M KCl and 50% (v/v) ethanol–water mixture. The order of the stability constants of the formed complexes was found to be La3+ < Ce3+ < UO < Th4+. The influence of substituents on the stability of the complexes was examined on the basis of electron‐repelling property of the substituent. The effect of temperature on the stability of the complexes formed was studied and the corresponding thermodynamic parameters (ΔG, ΔH, and ΔS) were derived and discussed. The stoichiometries of these complexes were determined conductometrically and indicated the formation of 1:1 and 1:2 (metal:ligand) complexes. © 2003 Wiley Periodicals, Inc. Int J Quantum Chem, 2003  相似文献   

15.
Chiral 1,3,2‐Oxazaborolidines from the Reaction of Chiral 2,3‐Dihydro‐1H‐1,3,2‐diazaboroles and Diphenylketene Reaction of equimolar amounts of diphenylketene with 1,3‐di‐tert‐butyl‐2‐isobutyl‐2,3‐dihydro‐1H‐1,3,2‐diazaborole ( 1 ) regioselectively afforded 1,3,2‐oxazaborolidine ( 2 ). The employment of a series of chiral diazaboroles ( 3a : X = nBu; b: iBu; c: CH2SiMe3; d: NHtBu) led to the formation of the diastereoisomeric oxazaborolidines ( 4a – d ) with diastereomeric excesses de, which increase with the steric demand of X from de = 55 % (X = nBu) to de ≥ 95 % (X = NHtBu). Under comparable conditions the treatment of the enantiomerically pure diazaborole ( 6 ) with the ketene yielded oxazaborolidine ( 7 ) with a de‐value of only 52 %. The new compounds, with exception of 2 and 4d , are thermolabile solids, which were characterized mainly by spectroscopy (1H‐, 11B{1H}‐, 13C{1H}‐NMR, MS). The X‐ray structure analysis of 2 revealed a slightly puckered five‐membered heterocycle with a long B–O bond.  相似文献   

16.
Preparation, Characterisation, and Crystal Structures of the Pseudohalogen Crown Ether Complexes [K([18]crown‐6)(X)(OPPh3)] (X = N3, OCN and SCN) The potassium crown ether complexes [K([18]Crown‐6)(X)(OPPh3)] (with X = N3, OCN and SCN) can be obtained by reaction of KX with 18‐crown‐6 (1, 4, 7, 10, 13, 16‐hexaoxacyclooctadecane and triphenylphosphane in THF exposed to UV light. All crown ether complexes were characterized by means of vibrational spectroscopy and X‐ray diffraction. They crystallize in the rhombic pointgroup R3m with three molecules in the unit cell: [K([18]crown‐6) (N3)(OPPh3)] ( 1 ): lattice constants at 293 K: a = b = 14.213(2) Å; c = 13.951(2) Å; R1 = 0.0249. [K([18]crown‐6)(OCN)(OPPh3)] ( 2 ): a = b = 14.239(2) Å; c = 13.8927(14) Å; R1 = 0.0257. [K([18]crown‐6)(NCS)(OPPh3)] ( 3 ): a = b = 14.339(2) Å; c = 14.266(2) Å; R1 = 0.0264.  相似文献   

17.
The mixed‐ligand Mn(II), Fe(III), Ni(II), Cu(II), Zn(II) and Zr(IV) complexes of meloxicam (H2mel) and 2,2′‐bipyridine (Bipy) were prepared and characterized. For all complexes, the analytical and spectroscopic results revealed that H2mel acts in a monobasic bidentate manner through the oxygen of the amide and nitrogen of the thiazole groups, whereas Bipy coordinates through the two nitrogen atoms with slightly distorted octahedral geometry. Thermodynamic parameters (E, ΔS*, ΔH* and ΔG*) were calculated using Coats–Redfern and Horowitz–Metzger methods. The geometries of H2mel and the complexes were carefully studied using density functional theory to predict the properties of materials performed using the hybrid density functional method B3LYP. All studied complexes are soft with respect to H2mel where η varies from 0.096 for Zn(II) complex to 0.067 for Fe(III) complex and σ varies from 10.42 to 14.93 eV, while η and σ for H2mel are 0.14 and 7.14 eV, respectively. The antibacterial activities of the ligands and metal complexes were investigated and the data show that the complexes are active against some bacterial species compared with H2mel.  相似文献   

18.
To develop a new solvent‐impregnated resin (SIR) system for removal of phenols from water, the complex formation of dimethyldodecylamine N‐oxide (DMDAO), trioctylamine N‐oxide (TOAO), and tris(2‐ethylhexyl)amine N‐oxide (TEHAO) with phenol (PhOH) and thiophenol (PhSH) is studied. To this end we use isothermal titration calorimetry (ITC) and quantum chemical modeling (on B3LYP/6‐311G(d,p)‐optimized geometries: B3LYP/6‐311+G(d,p), B3LYP/6‐311++G(2d,2p), MP2/6‐311+G(d,p), and spin component scaled (SCS) MP2/6‐311+G(d,p); M06‐2X/6‐311+G(d,p)//M06‐2X/6‐311G(d,p), MP2 with an extrapolation to the complete basis set limit (MP2/CBS), as well as CBS‐Q). The complexes are analyzed in terms of structural (e.g., bond lengths) and electronic elements (e.g., charges). Furthermore, complexation and solvent effects (in benzene, toluene, and mesitylene) are investigated by ITC measurements, yielding binding constants K, enthalpies ΔH0, Gibbs fre energies ΔG0, and entropies ΔS0 of complex formation, and stoichiometry N. The ITC measurements revealed strong 1:1 complex formation between both DMDAO–PhOH and TOAO–PhOH. The binding constant (K=1.7–5.7×104 M ?1) drops markedly when water‐saturated toluene was used (K=5.8×103 M ?1), and π–π interaction with the solvent is shown to be relevant. Quantum mechanical modeling confirms formation of stable 1:1 complexes with linear hydrogen bonds that weaken on attachment of electron‐withdrawing groups to the amine N‐oxide moiety. Modeling also showed that complexes with PhSH are much weaker than those with PhOH, and in fact too weak for ITC determination. CBS‐Q incorrectly predicts equal or even higher binding enthalpies for PhSH than for PhOH, which invalidates it as a benchmark for other calculations. Data from the straightforward SCS‐MP2 method without counterpoise correction show very good agreement with the MP2/CBS values.  相似文献   

19.
Synthesis of novel (3a,S)‐1‐aryl/aryloxy/alkoxy‐3a,4‐dihydro‐3H‐1λ5‐[1,3,2]oxazaphospholo [3,4‐a] indole‐1‐ones, thiones, and selenones was achieved in two steps with high yields from 2,3‐dihydro‐1H‐indol‐2(S)yl methanol (1) and dichlorophenyl phosphine/ethyl dichlorophosphite (2a and b) in the presence of triethylamine in dry THF followed by treatment with hydrogen peroxide, sulfur, and selenium. The compounds 4gk have been synthesized by the direct cyclocondensation of 1 with different substituted phenyl phosphorodichloridates (2ce, g) and bis(2‐chloroethyl) phosphoramidic dichloride (2f).  相似文献   

20.
Two novel amino acids imine ligands (H2L1 and H2L2) have been synthesized using green condensation reaction from 2‐[3‐Amino‐5‐(2‐hydroxy‐phenyl)‐5‐methyl‐1,5‐dihydro‐[1, 2, 4]triazol‐4‐yl]‐3‐(1H‐indol‐3‐yl)‐propionic acid with benzaldehyde/p‐flouro benzaldehyde (1:1 molar ratio) in the presence of lemon juice as a natural acidic catalyst in aqueous medium. Their transition metal complexes have been prepared in a molar ratio (1:1). Characterization of the ligands and complexes using elemental analysis, spectroscopic studies, 1HNMR, 13CNMR, and thermal analysis has been reported. E*, ΔH*, ΔS* and ΔG* thermodynamic parameters, were calculated to throw more light on the nature of changes accompanying the thermal decomposition process of these complexes. The molar conductance measurement of metal complexes showed nonelectrolyte behavior. The metal complexes of the two ligands have tetrahedral geometry with a general molecular structure [M(H2L)Xn], where [(M = Mn (II), Co (II), Cu (II) and Zn (II), X = Cl, n = 2]; M = VO (II), X = SO4, n = 1] for H2L1. [M = Co (II), Cu (II), Zn (II)] for H2L2. Antibacterial activity of the complexes against (Bacillis subtilis, Micrococcus luteus, Escherichia coli), also antifungal activity against (Aspergillus niger, Candida Glabarta, Saccharomyces cerevisiae) have been screened. The results showed that all complexes have antimicrobial activity higher than free ligands. Molecular docking studies results showed that, all the synthesized compounds having minimum binding energy and have good affinity toward the active pocket, thus, they may be considered as good inhibitor of targeting PDB code: 1SC7 (Human DNA Topo‐isomerase I).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号