首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Small angle X-ray scattering (SAXS) is a powerful characterization technique for the analysis of polymer-silica nanocomposite particles due to their relatively narrow particle size distributions and high electron density contrast between the polymer core and the silica shell. Time-resolved SAXS is used to follow the kinetics of both nanocomposite particle formation (via silica nanoparticle adsorption onto sterically stabilized poly(2-vinylpyridine) (P2VP) latex in dilute aqueous solution) and also the spontaneous redistribution of silica that occurs when such P2VP-silica nanocomposite particles are challenged by the addition of sterically stabilized P2VP latex. Silica adsorption is complete within a few seconds at 20 °C and the rate of adsorption strongly dependent on the extent of silica surface coverage. Similar very short time scales for silica redistribution are consistent with facile silica exchange occurring as a result of rapid interparticle collisions due to Brownian motion; this interpretation is consistent with a zeroth-order Smoluchowski-type calculation.  相似文献   

2.
3.
The process of gelation of one of the monosaccharides, alpha-galactose-based gelator, with benzene as a solvent, has been studied. Small-angle X-ray scattering (SAXS) synchrotron time-resolved measurements were performed throughout the gelation process. The obtained SAXS measurements were elaborated using such methods as the fractal analysis, Fourier transform to get distance distribution functions, and simulation of a cluster model. We obtained the picture of the mesostructure development from the sol state to the gel state. Our results indicate that the fractal-type aggregates exist in the sol and the process of gelation is accompanied by the structural transition. This transition causes the aggregates to become smaller and denser, and their shapes differ from those of the sol. The complex method of SAXS data treatment we established seems to be a useful tool also for further studies of monosaccharide gelation.  相似文献   

4.
The formation of silica particles by the ammonia-catalyzed hydrolysis of tetraethyl orthosilicate (TEOS) in the polyoxyethylene (5) nonylphenyl ether (NP-5)/cyclohexane/water microemulsion system was investigated by time-resolved small-angle X-ray scattering (SAXS). The SAXS data could be modeled as a combination of two species where one describes the silica-particle containing microemulsion droplets and the other the reverse droplets. The analysis allowed the determination of the evolution of the system of particles of silica and reverse droplets. A model of nucleation and growth of the silica particles is confirmed and the volume fraction versus time data for the silica particles is in agreement with first order kinetics with respect to TEOS concentration. Moreover to describe the long time evolution of the system, a correlation among the silica particles has been taken into account by introducing a structure factor with a local silica volume fraction eta = 0.1. This high local density is 2 orders of magnitude larger than the global silica fraction and can be explained in terms of depleting interaction.  相似文献   

5.
A unique type of inorganic-organic hybrid semiconductor bulk material is capable of emitting direct white light. Their photoluminescence properties can be tuned precisely and systematically by modifying structures and composition. They could be used as a single-material light-emitting source in high efficiency white-light-emitting diodes.  相似文献   

6.
The efficient synthesis of all-acrylic, film-forming, core-shell colloidal nanocomposite particles via in situ aqueous emulsion copolymerization of methyl methacrylate with n-butyl acrylate in the presence of a glycerol-functionalized ultrafine silica sol using a cationic azo initiator at 60 °C is reported. It is shown that relatively monodisperse nanocomposite particles can be produced with typical mean weight-average diameters of 140-330 nm and silica contents of up to 39 wt %. The importance of surface functionalization of the silica sol is highlighted, and it is demonstrated that systematic variation of parameters such as the initial silica sol concentration and initiator concentration affect both the mean particle diameter and the silica aggregation efficiency. The nanocomposite morphology comprises a copolymer core and a particulate silica shell, as determined by aqueous electrophoresis, X-ray photoelectron spectroscopy, and electron microscopy. Moreover, it is shown that films cast from n-butyl acrylate-rich copolymer/silica nanocomposite dispersions are significantly more transparent than those prepared from the poly(styrene-co-n-butyl acrylate)/silica nanocomposite particles reported previously. In the case of the aqueous emulsion homopolymerization of methyl methacrylate in the presence of ultrafine silica, a particle formation mechanism is proposed to account for the various experimental observations made when periodically sampling such nanocomposite syntheses at intermediate comonomer conversions.  相似文献   

7.
Polyacrylate/silica nanocomposite latex particles were prepared by in situ emulsion polymerization of acrylate monomers initiated by 2,2′-azobis(2-amidinopropane)dihydrochloride (AIBA) adsorbed by silica nanoparticles. The anchoring of polyacrylate (ACR) onto silica nanoparticles was achieved through the physical absorption and chemical grafting reaction. The elution and HF etching experiments showed that most silica nanoparticles were encapsulated by ACR to form the raspberry-like ACR/silica nanocomposite latex particles. The silica nanoparticles with a greater grafting degree of ACR tended to locate in the bulk of the polymer, and the silica particle with a lower grafting degree would not be combined with polymer latex particles and always remained in water phase. The formation of the final ACR/silica nanocomposite latex particles included the anchoring of ACR onto silica primary particles, aggregation of silica primary particles to form the silica-containing latex particles, and the growth of latex particles.  相似文献   

8.
Film formation and capillary condensation of nitrogen at 78 K on the mesoporous controlled pore glass CPG-10-75 have been studied at certain relative pressures by in situ small-angle neutron scattering. On desorption ramified clusters of vapor filled voids have been observed, but not on adsorption. The kinetics of adsorption and desorption have been followed. The experimental results are discussed with respect to recent theoretical studies of fluids in complex pore systems.  相似文献   

9.
Summary It was shown that the conformation of a single polymer chain in concentrated solutions and in undiluted state can be estimated from the small-angle X-ray scattering of randomly tagged polymer mixed in the systems. The randomly tagged polymer means the polymer containing heavy atoms at randomly selected positions along the molecule. The excess scattering of the tagged polymer is obtained by subtracting the scattering of the untagged polymer solution (or bulk) from that of the mixture solution (or bulk) containing the tagged and untagged polymers. The excess scattering obtained in this way contains the contributions of some undesirable cross terms of the scattering amplitude. The method for the experimental evaluation of these terms and the conditions under which these terms are negligible are discussed. It was found that the cross terms can be neglected when the contrast in scattering power between the tagged and untagged scattering units is sufficiently large, and the number of the tags per tagged molecule is not so small.The distribution of the tags in the tagged molecules was also taken into consideration. By averaging the theoretical scattered intensity over all possible positions of the tags, it was found that the excess scattering is practically proportional to the scattering function of the untagged polymer when the number of the tags per tagged molecule is not so small. Experimental verification of this theory was shown.It was also shown experimentally that the conformational change, which may be caused by the effect of the tags, can be eliminated by the extrapolation of the results obtained for a series of tagged polymers with various tag contents to zero tag content.With 2 figures  相似文献   

10.
Hybrid micelles from polystyrene-block-polyglycidol (PS-b-PG) copolymers with chemically cross-linked cores by titanium tetraisopropoxide (Ti(OC(3)H(7))(4)) were prepared in toluene solution. Additionally, micellization of PS-b-PG copolymers with different mass fractions of polyglycidol (x(PG)), was studied by static and dynamic light scattering as well as small-angle X-ray scattering. It was observed that copolymers with x(PG) smaller than 0.5 self-assembled in toluene into spherical core-shell micelles with hydrodynamic radii R(h) between 12 and 23 nm. On the other hand, copolymers with larger PG content formed particles with R(h) = 50-70 nm and aggregation numbers of several thousands. The presence of these aggregates in solution was attributed to the nonequilibrated form of block copolymers upon dissolving, most probably due to hydrogen bonding. In the following, spherical PS-b-PG micelles were loaded in toluene with hydrochloric acid and titanium tetraisopropoxide. Confined hydrolysis of Ti(OC(3)H(7))(4) induced by HCl in the micellar core was confirmed by small-angle X-ray scattering experiments. The subsequent condensation of the precursor with hydroxyl groups of polyglycidol chains led to covalently stabilized hybrid organic-inorganic particles. The presence of cross-linked PS-b-PG micelles was proven in two ways. First, micelles with "frozen" core showed stable hydrodynamic size in time upon dilution below critical micellization concentration while non-cross-linked PS-b-PG micelles underwent disintegration under the same conditions within several hours. Second, light scattering experiments revealed the presence of stable, swollen particles in N,N-dimethylformamide, which is a good solvent for both blocks.  相似文献   

11.
The replacement of HgCl2/C with Au/C as a catalyst for acetylene hydrochlorination represents a significant reduction in the environmental impact of this industrial process. Under reaction conditions atomically dispersed cationic Au species are the catalytic active site, representing a large-scale application of heterogeneous single-site catalysts. While the metal nuclearity and oxidation state under operating conditions has been investigated in catalysts prepared from aqua regia and thiosulphate, limited studies have focused on the ligand environment surrounding the metal centre. We now report K-edge soft X-ray absorption spectroscopy of the Cl and S ligand species used to stabilise these isolated cationic Au centres in the harsh reaction conditions. We demonstrate the presence of three distinct Cl species in the materials; inorganic Cl, Au–Cl, and C–Cl and how these species evolve during reaction. Direct evidence of Au–S interactions is confirmed in catalysts prepared using thiosulfate precursors which show high stability towards reduction to inactive metal nanoparticles. This stability was clear during gas switching experiments, where exposure to C2H2 alone did not dramatically alter the Au electronic structure and consequently did not deactivate the thiosulfate catalyst.

In situ chlorine and sulphur XAS shows a dynamic ligand environment around cationic Au single-sites during acetylene hydrochlorination.  相似文献   

12.
We present an examination of palladium (Pd) nanoparticle growth on genetically modified tobacco mosaic virus (TMV1cys) nanotemplates via in situ small-angle X-ray scattering (SAXS). Specifically, we examine the role of the TMV1cys templates in Pd nanoparticle formation through the electroless reduction of Pd precursor by a chemical reducing agent as compared to identical conditions in the absence of the TMV1cys templates. We show that in the presence of TMV1cys, the viral nanotemplates provide preferential growth sites for Pd nanoparticle formation, as no measurable Pd particle growth was observed in the bulk solution. In situ SAXS confirmed that particle formation was due to the rapid adsorption of Pd atoms onto the TMV1cys templates at the very early stage of mixing, rather than adsorption of particles formed in the bulk solution. Importantly, Pd nanoparticles were significantly smaller and more uniform as compared to particle formation in the absence of TMV1cys. The Pd nanoparticle coating density was tunable based on Pd precursor concentration. Finally, we show that Pd particle growth on the TMV1cys templates was highly rapid, and complete within 33 s for most samples, in contrast to slower Pd particle growth in the absence of TMV templates. We envision that the results presented here will be valuable in furthering the fundamental understanding of the role of viral nanotemplates in particle formation, as well as of their utility in a wide range of applications.  相似文献   

13.
Small-angle X-ray scattering (SAXS) is used to characterize the in situ formation of diblock copolymer spheres, worms and vesicles during reversible addition–fragmentation chain transfer (RAFT) aqueous dispersion polymerization of 2-hydroxypropyl methacrylate at 70 °C using a poly(glycerol monomethacrylate) steric stabilizer. 1H NMR spectroscopy indicates more than 99% HPMA conversion within 80 min, while transmission electron microscopy and dynamic light scattering studies are consistent with the final morphology being pure vesicles. Analysis of time-resolved SAXS patterns for this prototypical polymerization-induced self-assembly (PISA) formulation enables the evolution in copolymer morphology, particle diameter, mean aggregation number, solvent volume fraction, surface density of copolymer chains and their mean inter-chain separation distance at the nanoparticle surface to be monitored. Furthermore, the change in vesicle diameter and membrane thickness during the final stages of polymerization supports an ‘inward growth’ mechanism.

In situ small-angle X-ray scattering is used to monitor the formation of diblock copolymer spheres, worms and vesicles during reversible addition-fragmentation chain transfer (RAFT) aqueous dispersion polymerization of 2-hydroxypropyl methacrylate.  相似文献   

14.
The influence of salts (NaCl, NaBr, and NaI) on the formation of mesoporous silica SBA-15 was studied in situ by small-angle X-ray scattering and diffraction. Pluronic P104 was used as structure director. The micellar properties and the dynamics of formation were clearly dependent on the presence of salt. It was also shown that the kinetics of mesophase formation, the initial value of the cell parameters, and the extent of long-range order were all influenced by salt additions. The observations are explained to primarily originate from the influence of the anions on the ethylene oxide part of the polymer, i.e., the corona region of the Pluronic micelles. Two effects are identified: a general ion effect causing dehydration of the ethylene oxide part and consequently inducing micellar growth, and a specific ion effect that counterbalances this. The study provides the basis for understanding the means by which addition of simple Na-salts influence the formation of mesoscopically ordered silicas synthesized using nonionic surfactants as structure directors, hence advancing the knowledge base toward a more rational design of mesoporous materials.  相似文献   

15.
The structure factors of colloidal silica dispersions at rather high volume fractions (from 0.055 to 0.22) were measured by small-angle X-ray scattering and fitted with both the equivalent hard-sphere potential model (EHS) and the Hayter-Penfold/Yukawa potential model (HPY). Both of these models described the interactions in these dispersions successfully, and the results were in reasonable agreement. The strength and range of the interaction potentials decreased with increasing particle volume fractions, which suggests shrinkage of the electrical double layer arising from an increase in the counterion concentration in the bulk solution. However, the interactions at the average interparticle separation increased as the volume fraction increased. The interaction ranges (delta) determined by the two models were very similar. Structure factors were also used to determine the size and volume fraction of the particles. The values of the size obtained from the structure factors were slightly larger than those obtained from the form factors; this difference is ascribed to the nonspherical shape and polydispersity of the colloidal particles. The volume fractions measured by these two methods were very similar and are both in good agreement with the independently measured results.  相似文献   

16.
The evolution of the intracellular caspase family is crucial in cell apoptosis. To evaluate this process, a universal platform of in situ activation and monitoring of the evolution of intracellular caspase is designed. Using well-known gold nanostructure as a model of both nanocarrier and matter inducing the cell apoptosis for photothermal therapy, a nanoprobe is prepared by assembly of two kinds of dye-labelled peptides specific to upstream caspase-9 and downstream caspase-3 as the signal switch, and folic acid as a targeting moiety. The energy transfer from dyes to the gold nanocarrier at two surface plasmon resonance absorption wavelengths leads to their fluorescence quenching. Upon endocytosis of the nanoprobe to perform the therapy against cancer cells, the peptides are successively cleaved by intracellular caspase activation with the evolution from upstream to downstream, which lights up the fluorescence of the dyes sequentially, and can be used to quantify both caspase-9 and caspase-3 activities in cancer cells and to monitor their evolution in living mice. The recovered fluorescence could also be used to assess therapeutic efficiency. This work provides a novel powerful tool for studying the evolution of the intracellular caspase family and elucidating the biological roles of caspases in cancer cell apoptosis.  相似文献   

17.
A shear cell was constructed in two variants for simultaneous small-angle X-ray scattering and freeze fracture. Using this cell, the changes in the layer structure and the domain formation of the Synperonic A7-water system were investigated under shear. The reconstructions of both the layer and domain structures were not observed in the steady state after 1 h (following a 2 h long shear period). Destruction of the lamellar arrangement and formation of aggregates occurred during the stress. It was concluded that the tixotropic behavior originates rather from the change of the domain structure with a typical size range of microm than from the changes of the inner structure of domains with lamellar arrangement.  相似文献   

18.
Here we investigate the dynamic self-assembly pathway of ordered gold nanocrystal arrays during the self-assembly of gold nanocrystal micelles, with and without the presence of colloidal silica precursors, using grazing-incidence X-ray scattering performed at a synchrotron source. With silica precursors present, a lattice with rhombohedral symmetry is formed from the partial collapse of a face-centered cubic structure. In the absence of silica, a transient body-centered orthorhombic phase appears, which rapidly collapses into a glassy nanocrystal film. The appearance of face-centered and body-centered structures is consistent with a phase diagram for charged colloidal particles with assembly modulated via Coulomb screening.  相似文献   

19.
Understanding the mechanisms involved in structural development in the vicinity of membrane constitutes a considerable challenge in the improvement of ultrafiltration process in industrial applications. In situ small-angle X-ray scattering (SAXS) performed with custom-made ultrafiltration cell has permitted the structural arrangement to be probed and concentration profiles to be obtained in deposited layers during frontal filtration of casein micelle suspension. SAXS allowed the structure of the accumulated layers of casein micelles between 280 microm and 1 mm from the membrane surface to be followed at length scales from a few nanometers to about 100 nm. These results have been combined with hydrodynamic measurements (permeation flux) and rheological investigations. Under frontal filtration, the time dependence of concentration at different distances from the membrane surface has been obtained. This temporal evolution is marked by an exponential increase of the concentration followed by a slower growth which has been associated with a change in the rheological behavior of the suspension from Newtonian to shear thinning behavior.  相似文献   

20.
Hamburg workshop on the "application of synchrotron radiation in chemistry"With grazing incidence small-angle X-ray scattering (GISAXS) the limitations of conventional small-angle X-ray scattering with respect to extremely small sample volumes in the thin-film geometry are overcome. GISAXS turned out to be a powerful advanced scattering technique for the investigation of nanostructured polymer films. Similar to atomic force microscopy (AFM), a large interval of length between molecular and mesoscopic scales is detectable with a surface-sensitive scattering method. While with AFM only surface topographies are accessible, with GISAXS the buried structure is also probed. Because a larger surface area is probed, GISAXS also has a much larger statistical significance compared to AFM. Due to the high demand on collimation, GISAXS experiments are based on synchrotron radiation. Nanostructures parallel and perpendicular to the sample surface observable in thin poly(styrene- block-isoprene) diblock copolymer films are presented as an example of the possibilities of GISAXS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号