首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Formate and CO are competing products in the two-electron CO2 reduction reaction (2e CO2RR), and they are produced via *OCHO and *COOH intermediates, respectively. However, the factors governing CO/formate selectivity remain elusive, especially for metal–carbon–nitrogen (M–N–C) single-atom catalysts (SACs), most of which produce CO as their main product. Herein, we show computationally that the selectivity of M–N–C SACs is intrinsically associated with the CO2 adsorption mode by using bismuth (Bi) nanosheets and the Bi–N–C SAC as model catalysts. According to our results, the Bi–N–C SAC exhibits a strong thermodynamic preference toward *OCHO, but under working potentials, CO2 is preferentially chemisorbed first due to a charge accumulation effect, and subsequent protonation of chemisorbed CO2 to *COOH is kinetically much more favorable than formation of *OCHO. Consequently, the Bi–N–C SAC preferentially produces CO rather than formate. In contrast, the physisorption preference of CO2 on Bi nanosheets contributes to high formate selectivity. Remarkably, this CO2 adsorption-based mechanism also applies to other typical M–N–C SACs. This work not only resolves a long-standing puzzle in M–N–C SACs, but also presents simple, solid criteria (i.e., CO2 adsorption modes) for indicating CO/formate selectivity, which help strategic development of high-performance CO2RR catalysts.

This report discloses a nontrivial role of the CO2 adsorption mode in governing the CO/formate selectivity of single-atom catalysts towards two-electron CO2 reduction.  相似文献   

2.
A DFT study has been conducted to understand the asymmetric alkyl–alkyl bond formation through nickel-catalysed reductive coupling of racemic alkyl bromide with olefin in the presence of hydrosilane and K3PO4. The key findings of the study include: (i) under the reductive experimental conditions, the Ni(ii) precursor is easily activated/reduced to Ni(0) species which can serve as an active species to start a Ni(0)/Ni(ii) catalytic cycle. (ii) Alternatively, the reaction may proceed via a Ni(i)/Ni(ii)/Ni(iii) catalytic cycle starting with a Ni(i) species such as Ni(i)–Br. The generation of a Ni(i) active species via comproportionation of Ni(ii) and Ni(0) species is highly unlikely, because the necessary Ni(0) species is strongly stabilized by olefin. Alternatively, a cage effect enabled generation of a Ni(i) active catalyst from the Ni(ii) species involved in the Ni(0)/Ni(ii) cycle was proposed to be a viable mechanism. (iii) In both catalytic cycles, K3PO4 greatly facilitates the hydrosilane hydride transfer for reducing olefin to an alkyl coupling partner. The reduction proceeds by converting a Ni–Br bond to a Ni–H bond via hydrosilane hydride transfer to a Ni–alkyl bond via olefin insertion. On the basis of two catalytic cycles, the origins for enantioconvergence and enantioselectivity control were discussed.

The enantioconvergent alkyl–alkyl coupling involves two competitive catalytic cycles with nickel(0) and nickel(i) active catalysts, respectively. K3PO4 plays a crucial role to enable the hydride transfer from hydrosilane to nickel–bromine species.  相似文献   

3.
The syntheses of (DIM)Ni(NO3)2 and (DIM)Ni(NO2)2, where DIM is a 1,4-diazadiene bidentate donor, are reported to enable testing of bis boryl reduced N-heterocycles for their ability to carry out stepwise deoxygenation of coordinated nitrate and nitrite, forming O(Bpin)2. Single deoxygenation of (DIM)Ni(NO2)2 yields the tetrahedral complex (DIM)Ni(NO)(ONO), with a linear nitrosyl and κ1-ONO. Further deoxygenation of (DIM)Ni(NO)(ONO) results in the formation of dimeric [(DIM)Ni(NO)]2, where the dimer is linked through a Ni–Ni bond. The lost reduced nitrogen byproduct is shown to be N2O, indicating N–N bond formation in the course of the reaction. Isotopic labelling studies establish that the N–N bond of N2O is formed in a bimetallic Ni2 intermediate and that the two nitrogen atoms of (DIM)Ni(NO)(ONO) become symmetry equivalent prior to N–N bond formation. The [(DIM)Ni(NO)]2 dimer is susceptible to oxidation by AgX (X = NO3, NO2, and OTf) as well as nitric oxide, the latter of which undergoes nitric oxide disproportionation to yield N2O and (DIM)Ni(NO)(ONO). We show that the first step in the deoxygenation of (DIM)Ni(NO)(ONO) to liberate N2O is outer sphere electron transfer, providing insight into the organic reductants employed for deoxygenation. Lastly, we show that at elevated temperatures, deoxygenation is accompanied by loss of DIM to form either pyrazine or bipyridine bridged polymers, with retention of a BpinO bridging ligand.

Deoxygenation of nitrogen oxyanions coordinated to nickel using reduced borylated heterocycles leads to N–N bond formation and N2O liberation. The nickel dimer product facilitates NO disproportionation, leading to a synthetic cycle.  相似文献   

4.
Copper-based catalysts are efficient for CO2 reduction affording commodity chemicals. However, Cu(i) active species are easily reduced to Cu(0) during the CO2RR, leading to a rapid decay of catalytic performance. Herein, we report a hybrid-catalyst that firmly anchors 2D-Cu metallic dots on F-doped CuxO nanoplates (CuxOF), synthesized by electrochemical-transformation under the same conditions as the targeted CO2RR. The as-prepared Cu/CuxOF hybrid showed unusual catalytic activity towards the CO2RR for CH3COO generation, with a high FE of 27% at extremely low potentials. The combined experimental and theoretical results show that nanoscale hybridization engenders an effective s,p-d coupling in Cu/CuxOF, raising the d-band center of Cu and thus enhancing electroactivity and selectivity for the acetate formation. This work highlights the use of electronic interactions to bias a hybrid catalyst towards a particular pathway, which is critical for tuning the activity and selectivity of copper-based catalysts for the CO2RR.

A two-dimensional (2D) copper hybrid catalyst (Cu/CuxOF) composed of metallic Cu well dispersed on 2D F-doped CuxO nanoplates (CuxOF) is reported, which shows high catalytic activity toward the CO2RR for acetate generation.  相似文献   

5.
Tin (Sn)-based oxides have been proved to be promising catalysts for the electrochemical CO2 reduction reaction (CO2RR) to formate (HCOO). However, their performance is limited by their reductive transformation into metallic derivatives during the cathodic reaction. This paper describes the catalytic chemistry of a Sr2SnO4 electrocatalyst with a Ruddlesden–Popper (RP) perovskite structure for the CO2RR. The Sr2SnO4 electrocatalyst exhibits a faradaic efficiency of 83.7% for HCOO at −1.08 V vs. the reversible hydrogen electrode with stability for over 24 h. The insertion of the SrO-layer in the RP structure of Sr2SnO4 leads to a change in the filling status of the anti-bonding orbitals of the Sn active sites, which optimizes the binding energy of *OCHO and results in high selectivity for HCOO. At the same time, the interlayer interaction between interfacial octahedral layers and the SrO-layers makes the crystalline structure stable during the CO2RR. This study would provide fundamental guidelines for the exploration of perovskite-based electrocatalysts to achieve consistently high selectivity in the CO2RR.

This paper describes how the insertion of a SrO-layer in Ruddlesden–Popper Sr2SnO4 perovskite electrocatalysts promotes CO2 reduction towards formate via *OCHO intermediate. A faradaic efficiency of 83.7% and stability for over 24 h were obtained.  相似文献   

6.
The electrochemical CO2 reduction (CO2RR) is a sustainable approach to mitigate the increased CO2 emissions and simultaneously produce value-added chemicals and fuels. Metal-nitrogen-carbon (M-N-C) based single-atom catalysts (SACs) have emerged as promising electrocatalysts for CO2RR with high activity, selectivity, and stability. To design efficient SACs for CO2RR, the key influence factors need to be understood. Here, we summarize recent achievements on M-N-C SACs for CO2RR and highlight the significance of the key constituting factors, metal sites, the coordination environment, and the substrates, for achieving high CO2RR performance. The perspective views and guidelines are provided for the future direction of developing M-N-C SACs as CO2RR catalysts.  相似文献   

7.
Developing low-cost and high-activity transition metal oxide electrocatalysts for an efficient oxygen evolution reaction (OER) at a large current density is highly demanded for industrial application and remains a big challenge. Herein, we report vertically aligned cobalt doped Ni–Fe based oxide (Co–NiO/Fe2O3) arrays as a robust OER electrocatalyst via a simple method combining hydrothermal reaction with heat treatment. Density functional theory calculation and XRD Rietveld refinement reveal that Co preferentially occupies the Ni sites compared to Fe in the Ni–Fe based oxides. The electronic structures of the Co–NiO/Fe2O3 could be further optimized, leading to the improvement of the intrinsic electronic conductivity and d-band center energy level and the decrease in the reaction energy barrier of the rate-determining step for the OER, thus accelerating its OER electrocatalytic activity. The Co–NiO/Fe2O3 nanosheet arrays display state-of-the-art OER activities at a large current density for industrial demands among Fe–Co–Ni based oxide electrocatalysts, which only require an ultra-low overpotential of 230 mV at a high current density of 500 mA cm−2, and exhibit superb durability at 500 mA cm−2 for at least 300 h without obvious degradation. The Co–NiO/Fe2O3 nanosheet arrays also have a small Tafel slope of 33.9 mV dec−1, demonstrating fast reaction kinetics. This work affords a simple and effective method to design and construct transition metal oxide based electrocatalysts for efficient water oxidation.

Co–NiO/Fe2O3 nanosheets featuring Co substitution on Ni sites can effectively regulate electronic structures and exhibit high OER activities with low overpotential (η500 = 230 mV), small Tafel slope (33.9 mV dec−1) and superb durability for 300 h.  相似文献   

8.
The electrochemical CO2 reduction reaction (CO2RR) is viewed as a promising way to remove the greenhouse gas CO2 from the atmosphere and convert it into useful industrial products such as methane, methanol, formate, ethanol, and so forth. Single-atom site catalysts (SACs) featuring maximum theoretical atom utilization and a unique electronic structure and coordination environment have emerged as promising candidates for use in the CO2RR. The electronic properties and atomic structures of the central metal sites in SACs will be changed significantly once the types or coordination environments of the central metal sites are altered, which appears to provide new routes for engineering SACs for CO2 electrocatalysis. Therefore, it is of great importance to discuss the structural regulation of SACs at the atomic level and their influence on CO2RR activity and selectivity. Despite substantial efforts being made to fabricate various SACs, the principles of regulating the intrinsic electrocatalytic performances of the single-atom sites still needs to be sufficiently emphasized. In this perspective article, we present the latest progress relating to the synthesis and catalytic performance of SACs for the electrochemical CO2RR. We summarize the atomic-level regulation of SACs for the electrochemical CO2RR from five aspects: the regulation of the central metal atoms, the coordination environments, the interface of single metal complex sites, multi-atom active sites, and other ingenious strategies to improve the performance of SACs. We highlight synthesis strategies and structural design approaches for SACs with unique geometric structures and discuss how the structure affects the catalytic properties.

Electrochemical CO2 reduction reaction (CO2RR) is a promising way to remove CO2 and convert it into useful industrial products. Single-atom site catalysts provide opportunities to regulate the active sites of CO2RR catalysts at the atomic level.  相似文献   

9.
Oxide-derived copper (OD-Cu) has been discovered to be an effective catalyst for the electroreduction of CO2 to C2+ products. The structure of OD-Cu and its surface species during the reaction process are interesting topics, which have not yet been clearly discussed. Herein, in situ surface-enhanced Raman spectroscopy (SERS), operando X-ray absorption spectroscopy (XAS), and 18O isotope labeling experiments were employed to investigate the surface species and structures of OD-Cu catalysts during CO2 electroreduction. It was found that the OD-Cu catalysts were reduced to metallic Cu(0) in the reaction. CuOx species existed on the catalyst surfaces during the CO2RR, which resulted from the adsorption of preliminary intermediates (such as *CO2 and *OCO) on Cu instead of on the active sites of the catalyst. It was also found that abundant interfaces can be produced on OD-Cu, which can provide heterogeneous CO adsorption sites (strong binding sites and weak binding sites), leading to outstanding performance for obtaining C2+ products. The Faradaic efficiency (FE) for C2+ products reached as high as 83.8% with a current density of 341.5 mA cm−2 at −0.9 V vs. RHE.

CuOx species were shown to exist on OD-Cu during the CO2RR, which resulted from the adsorption of preliminary intermediates (such as *CO2 and *OCO) on Cu instead of on the active sites of the catalyst.  相似文献   

10.
Electrochemical conversion of CO2 into value-added chemicals continues to draw interest in renewable energy applications. Although many metal catalysts are active in the CO2 reduction reaction (CO2RR), their reactivity and selectivity are nonetheless hindered by the competing hydrogen evolution reaction (HER). The competition of the HER and CO2RR stems from the energy scaling relationship between their reaction intermediates. Herein, we predict that bimetallic monolayer electrocatalysts (BMEs) – a monolayer of transition metals on top of extended metal substrates – could produce dual-functional active sites that circumvent the scaling relationship between the adsorption energies of HER and CO2RR intermediates. The antibonding interaction between the adsorbed H and the metal substrate is revealed to be responsible for circumventing the scaling relationship. Based on extensive density functional theory (DFT) calculations, we identify 11 BMEs which are highly active and selective toward the formation of formic acid with a much suppressed HER. The H–substrate antibonding interaction also leads to superior CO2RR performance on monolayer-coated penta-twinned nanowires.

Dual-functional active sites are designed to circumvent the scaling relationship between the HER and CO2RR on bimetallic monolayer electrocatalysts.  相似文献   

11.
Understanding the catalyst compositional and structural features that control selectivity is of uttermost importance to target desired products in chemical reactions. In this joint experimental–computational work, we leverage tailored Cu/ZnO precatalysts as a material platform to identify the intrinsic features of methane-producing and ethanol-producing CuZn catalysts in the electrochemical CO2 reduction reaction (CO2RR). Specifically, we find that Cu@ZnO nanocrystals, where a central Cu domain is decorated with ZnO domains, and ZnO@Cu nanocrystals, where a central ZnO domain is decorated with Cu domains, evolve into Cu@CuZn core@shell catalysts that are selective for methane (∼52%) and ethanol (∼39%), respectively. Operando X-ray absorption spectroscopy and various microscopy methods evidence that a higher degree of surface alloying along with a higher concentration of metallic Zn improve the ethanol selectivity. Density functional theory explains that the combination of electronic and tandem effects accounts for such selectivity. These findings mark a step ahead towards understanding structure–property relationships in bimetallic catalysts for the CO2RR and their rational tuning to increase selectivity towards target products, especially alcohols.

A higher degree of surface alloying and Zn concentration boosts the selectivity towards ethanol of CuZn catalysts in CO2 electroreduction.  相似文献   

12.
Reaction of [Ni(1,5-cod)2] (30 equiv.) with PEt3 (46 equiv.) and S8 (1.9 equiv.) in toluene, followed by heating at 115 °C for 16 h, results in the formation of the atomically precise nanocluster (APNC), [Ni30S16(PEt3)11] (1), in 14% isolated yield. Complex 1 represents the largest open-shell Ni APNC yet isolated. In the solid state, 1 features a compact “metal-like” core indicative of a high degree of Ni–Ni bonding. Additionally, SQUID magnetometry suggests that 1 possesses a manifold of closely-spaced electronic states near the HOMO–LUMO gap. In situ monitoring by ESI-MS and 31P{1H} NMR spectroscopy reveal that 1 forms via the intermediacy of smaller APNCs, including [Ni8S5(PEt3)7] and [Ni26S14(PEt3)10] (2). The latter APNC was also characterized by X-ray crystallography and features a nearly identical core structure to that found in 1. This work demonstrates that large APNCs with a high degree of metal–metal bonding are isolable for nickel, and not just the noble metals.

The atomically-precise nanocluster, [Ni30S16(PEt3)11], features a compact “metal-like” core indicative of a high degree of Ni–Ni bonding, along with an open-shell ground state.  相似文献   

13.
Ba2(Ni1?xLix)Ni2N2: A Low-Valency Nitridoniccolate with Puckered Layers [(NiN2/2)? (Ni1?xLix)? (NiN2/2)] Ba2(Ni1?xLix)Ni2N2 is obtained by reaction of lithium-barium-melts (molar ratios Li : Ba between 1 : 1 and 3 : 1) with nitrogen (1 atm.) in nickel-crucibles within a period of 15 h. Single crystals with a dark-metallic lustre are formed by cooling the melt to room temperature with a rate of 10°C/h (orthorhombic, Cmca; a = 713.3(2)pm, b = 1027.4(7)pm, c = 752.2(4)pm; z = 4; Dxr = 5.50 g/cm3 with x = 0.43). The crystal structure contains nearly liner [NiN2/2]-chains (N? Ni? N: 178.5(7)°, Ni? N? Ni 173.4(7)°; Ni? N: 178.6(1)pm), running parallel to the [100] direction, which are interconnected via (Ni1?xLix)-sites (linear units (N? (Ni1?xLix)? N); bond-lenths: 194.5(12)pm with x = 0.43) to form puckered layer [(Nin2/2)? (Ni1?xLix)? (NiN2/2)]. Barium is in a distorted trigonal-planar coordination by nitrogen atoms (Ba? N: 281.1(11)pm ? 285.5(11)pm. The nitrogen-coordination corresponds to a distorted octahedron, NBa3(Ni1?xLix)Ni2, with nickel in trans-position. The crystal structure of Ba2(Ni1?xLix)Ni2N2 is closely related to the Li3N-type structure: Li2[LiN] ? Ba{(Ni1?xLix)0.50.5}[NiN]. Furthermore, this structure enlarges the scope of barium-nitrido-niccolates which up to now were found to contain merely [NiN2/2]-chains(BaNiN: Planar zigzag-chains; Ba8Ni6N7 helical zigzag-chains).  相似文献   

14.
Photoexcitation is one of the acknowledged methods to activate Ni-based cross-coupling reactions, but factors that govern the photoactivity of organonickel complexes have not yet been established. Here we report the excited-state cross-coupling activities of Ni(ii) metallacycle compounds, which display ∼104 times enhancement for the C–S bond-forming reductive elimination reaction upon Ni-centered ligand-field transitions. The effects of excitation energy and ancillary ligands on photoactivity have been investigated with 17 different nickelacycle species in combination with four corresponding acyclic complexes. Spectroscopic and computational electronic structural characterizations reveal that, regardless of coordinated species, d–d transitions can induce Ni–C bond homolysis, and that the reactivity of the resulting Ni(i) species determines the products of the overall reaction. The photoactivity mechanism established in this study provides general insights into the excited-state chemistry of organonickel(ii) complexes.

d–d excitations can accelerate C–S reductive eliminations of nickelacycles via intersystem crossing to a repulsive 3(C-to-Ni charge transfer) state inducing Ni–C bond homolysis. This homolytic photoreactivity is common for organonickel(ii) complexes.  相似文献   

15.
Herein, we report the stepwise assembly and reversible transformation of atomically precise ligated titanium coated bismuth-oxide core nanostructures. The soluble and stable Bi38O45@Ti6-oxo clusters with weakly coordinated surface salicylate ligands were first prepared as precursors. Owing to the high surface reactivity of the Bi38O45 inner core, its shell composition and morphology could be systemically modified by assembly with various Ti ions and auxiliary ligands (L), especially those with different flexibility, bridging ability and steric hindrance. As a result, a series of new core–shell Bi38O44/45@TixL-oxo (x = 14, 16, 18 or 20) clusters containing gradually increasing shell Ti atoms were successfully synthesized. Among them, the Bi38Ti20-oxo cluster is the largest one in the family of heterometallic Bi/Ti-oxo clusters to date. In addition, the sensitized titanium outer shell can effectively improve the photocurrent response under visible light irradiation. More remarkably, the obtained core–shell Bi38O44/45@TixL-oxo clusters can serve as stable and efficient catalysts for CO2 cycloaddition with epoxides under ambient conditions, whose activity was significantly influenced by the outer ligated titanium shell structure. This work provides a new insight into the construction of atomically precise heterometallic core–shell nanostructures and also an interesting shell engineering strategy for tuning their physicochemical properties.

Core–shell Bi38O44/45@TixL-oxo clusters were prepared by the stepwise assembly from soluble Bi38O45@Ti6 precursors to show modifiable shell and reversible structure transformation, which further changed their chemical fixation activities of CO2.  相似文献   

16.
Similar to the metal centers in biocatalysis and homogeneous catalysis, the metal species in single atom catalysts (SACs) are charged, atomically dispersed and stabilized by support and substrate. The reaction condition dependent catalytic performance of SACs has long been realized, but seldom investigated before. We investigated CO oxidation pathways over SACs in reaction conditions using atomically dispersed Au on h-BN (AuBN) as a model with extensive first-principles-based calculations. We demonstrated that the adsorption of reactants, namely CO, O2 and CO2, and their coadsorption with reaction species on AuBN would be condition dependent, leading to various reaction species with different reactivity and impact the CO conversion. Specifically, the revised Langmuir–Hinshelwood pathway with the CO-mediated activation of O2 and dissociation of cyclic peroxide intermediate followed by the Eley–Rideal type reduction is dominant at high temperatures, while the coadsorbed CO-mediated dissociation of peroxide intermediate becomes plausible at low temperatures and high CO partial pressures. Carbonate species would also form in existence of CO2, react with coadsorbed CO and benefit the conversion. The findings highlight the origin of the condition-dependent CO oxidation performance of SACs in detailed conditions and may help to rationalize the current understanding of the superior catalytic performance of SACs.  相似文献   

17.
We synthesized uniform-sized nanorods of iron–nickel phosphides from the thermal decomposition of metal–phosphine complexes. Uniform-sized (FexNi1−x)2P nanorods (0x1) of various compositions were synthesized by thermal decomposition of Ni–trioctylphosphine (TOP) complex and Fe–TOP complex. By measuring magnetic properties, we found that blocking temperature and coercive field depend on Ni content in the nanorods. Both parameters were more sensitive to doping compared with bulk samples.  相似文献   

18.
A novel and highly efficient approach for the synthesis of H2Me2bqb and H2Me2bpb using ionic liquid as an environmentally benign reaction medium has been developed, eliminating the need for the pyridine as a toxic solvent. The Ni(II) complex of the dianionic ligand Me2bqb2−, [Me2bqb2− = 1,2-bis(quinoline-2-carboxamide)-4,5-dimethyl-benzene dianion], has been synthesized and characterized by elemental analyses and spectroscopic methods, and the crystal and molecular structure of [Ni(Me2bqb)] (1), has been determined by X-ray crystallography. The complex exhibits distorted square-planar NiN4 coordination geometry with two short and two long Ni–N bonds (Ni–N ∼1.85 and ∼1.96 Å, respectively). The electrochemical behavior of [Ni(Me2bqb)] (1), has been studied by cyclic voltammetry and compared with the analogous complex, [Ni(Me2bpb)] (2).  相似文献   

19.
More than four decades ago, a complex identified as the planar homoleptic lithium nickelate “Li3NiPh3(solv)3” was reported by Taube and co-workers. This and subsequent reports involving this complex have lain dormant since; however, the absence of an X-ray diffraction structure leaves questions as to the nature of the Ni–PhLi bonding and the coordination geometry at Ni. By systematically evaluating the reactivity of Ni(COD)2 with PhLi under different conditions, we have found that this classical molecule is instead a unique octanuclear complex, [{Li3(solv)2Ph3Ni}2(μ-η22-C6H4)] (5). This is supported by X-ray crystallography and solution-state NMR studies. A theoretical bonding analysis from NBO, QTAIM, and ELI perspectives reveals extreme back-bonding to the bridging C6H4 ligand resulting in dimetallabicyclobutane character, the lack of a Ni–Ni bond, and pronounced σ-bonding between the phenyl carbanions and nickel, including a weak σC–Li → sNi interaction with the C–Li bond acting as a σ-donor. Employing PhNa led to the isolation of [Na2(solv)3Ph2NiCOD]2 (7) and [Na2(solv)3Ph2(NaC8H11)Ni(COD)]2 (8), which lack the benzyne-derived ligand. These findings provide new insights into the synthesis, structure, bonding and reactivity of heterobimetallic nickelates, whose prevalence in organonickel chemistry and catalysis is likely greater than previously believed.

We disclose the actual octanuclear nature of the major compound from reacting Ni(COD)2 and PhLi, assigned for more than four decades as ‘Li3NiPh3(solv)3’. We provide a thorough bonding analysis and discuss its potential implications in catalysis.  相似文献   

20.
Electrochemical CO2 reduction reaction (CO2RR) powered by renewable electricity has emerged as the most promising technique for CO2 conversion, making it possible to realize a carbon-neutral cycle. Highly efficient, robust, and cost-effective catalysts are highly demanded for the near-future practical applications of CO2RR. Previous studies on atomically dispersed metal-nitrogen (M-Nx) sites constituted of earth abundant elements with maximum atom-utilization efficiency have demonstrated their performance towards CO2RR. This review summarizes recent advances on a variety of M-Nx sites-containing transition metal-centered macrocyclic complexes, metal organic frameworks, and M-Nx-doped carbon materials for efficient CO2RR, including both experimental and theoretical studies. The roles of metal centers, coordinated ligands, and conductive supports on the intrinsic activity and selectivity, together with the importance of reaction conditions for improved performance are discussed. The mechanisms of CO2RR over these M-Nx-containing materials are presented to provide useful guidance for the rational design of efficient catalysts towards CO2RR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号