共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
Gangavaram V. M. Sharma Dr. Kota Sudhakar Rao Rapolu Ravi Kongari Narsimulu Pendem Nagendar Chirutha Chandramouli Singarapu Kiran Kumar Ajit C. Kunwar Dr. 《化学:亚洲杂志》2009,4(1):181-193
The design and synthesis of β‐peptides from new C‐linked carbo‐β‐amino acids (β‐Caa) presented here, provides an opportunity to understand the impact of carbohydrate side chains on the formation and stability of helical structures. The β‐amino acids, Boc‐(S)‐β‐Caa(g)‐OMe 1 and Boc‐(R)‐β‐Caa(g)‐OMe 2 , having a D ‐galactopyranoside side chain were prepared from D ‐galactose. Similarly, the homo C‐linked carbo‐β‐amino acids (β‐hCaa); Boc‐(S)‐β‐hCaa(x)‐OMe 3 and Boc‐(R)‐β‐hCaa(x)‐OMe 4 , were prepared from D ‐glucose. The peptides derived from the above monomers were investigated by NMR, CD, and MD studies. The β‐peptides, especially the shorter ones obtained from the epimeric (at the amine stereocenter Cβ) 1 and 2 by the concept of alternating chirality, showed a much smaller propensity to form 10/12‐helices. This substantial destabilization of the helix could be attributed to the bulkier D ‐galactopyranoside side chain. Our efforts to prepare peptides with alternating 3 and 4 were unsuccessful. However, the β‐peptides derived from alternating geometrically heterochiral (at Cβ) 4 and Boc‐(R)‐β‐Caa(x)‐OMe 5 (D ‐xylose side chain) display robust right‐handed 10/12‐helices, while the mixed peptides with alternating 4 and Boc‐β‐hGly‐OMe 6 (β‐homoglycine), resulted in left‐handed β‐helices. These observations show a distinct influence of the side chains on helix formation as well as their stability. 相似文献
8.
9.
10.
11.
Dr. Gangavaram V. M. Sharma Nagula Chandramouli Shaik Jeelani Basha Dr. Pendem Nagendar Dr. Kallaganti V. S. Ramakrishna Dr. Akella V. S. Sarma 《化学:亚洲杂志》2011,6(1):84-97
Novel three‐residue helix‐turn secondary structures, nucleated by a helix at the N terminus, were generated in peptides that have ‘β‐Caa‐L ‐Ala‐L ‐Ala,’ ‘β‐Caa‐L ‐Ala‐γ‐Caa,’ and ‘β‐Caa‐L ‐Ala‐δ‐Caa’ (in which β‐Caa is C‐linked carbo‐β‐amino acid, γ‐Caa is C‐linked carbo‐γ‐amino acid, and δ‐Caa is C‐linked carbo‐δ‐amino acid) at the C terminus. These turn structures are stabilized by 12‐, 14‐, and 15‐membered (mr) hydrogen bonding between NH(i)/CO(i+2) (i+2 is the last residue in the peptide) along with a 7‐mr hydrogen bond between CO(i)/NH(i+2). In addition, a series of α/β‐peptides were designed and synthesized with alternating glycine (Gly) and (S)‐β‐Caa to study the influence of an achiral α‐residue on the helix and helix‐turn structures. In contrast to previous results, the three ‘β–α–β’ residues at the C terminus (α‐residue being Gly) are stabilized by only a 13‐mr forward hydrogen bond, which resembles an α‐turn. Extensive NMR spectroscopic and molecular dynamics (MD) studies were performed to support these observations. The influence of chirality and side chain is also discussed. 相似文献
12.
13.
14.
Krishnayan Basuroy Appavu Rajagopal Dr. Srinivasarao Raghothama Prof. Narayanaswamy Shamala Prof. Padmanabhan Balaram 《化学:亚洲杂志》2012,7(7):1671-1678
The effect of gem‐dialkyl substituents on the backbone conformations of β‐amino acid residues in peptides has been investigated by using four model peptides: Boc‐Xxx‐β2,2Ac6c(1‐aminomethylcyclohexanecarboxylic acid)‐NHMe (Xxx=Leu ( 1 ), Phe ( 2 ); Boc=tert‐butyloxycarbonyl) and Boc‐Xxx‐β3,3Ac6c(1‐aminocyclohexaneacetic acid)‐NHMe (Xxx=Leu ( 3 ), Phe ( 4 )). Tetrasubstituted carbon atoms restrict the ranges of stereochemically allowed conformations about flanking single bonds. The crystal structure of Boc‐Leu‐β2,2Ac6c‐NHMe ( 1 ) established a C11 hydrogen‐bonded turn in the αβ‐hybrid sequence. The observed torsion angles (α(?≈?60°, ψ≈?30°), β(?≈?90°, θ≈60°, ψ≈?90°)) corresponded to a C11 helical turn, which was a backbone‐expanded analogue of the type III β turn in αα sequences. The crystal structure of the peptide Boc‐Phe‐β3,3Ac6c‐NHMe ( 4 ) established a C11 hydrogen‐bonded turn with distinctly different backbone torsion angles (α(?≈?60°, ψ≈120°), β(?≈60°, θ≈60°, ψ≈?60°)), which corresponded to a backbone‐expanded analogue of the type II β turn observed in αα sequences. In peptide 4 , the two molecules in the asymmetric unit adopted backbone torsion angles of opposite signs. In one of the molecules, the Phe residue adopted an unfavorable backbone conformation, with the energetic penalty being offset by a favorable aromatic interaction between proximal molecules in the crystal. NMR spectroscopy studies provided evidence for the maintenance of folded structures in solution in these αβ‐hybrid sequences. 相似文献
15.
16.
17.
18.
19.
20.
Dr. Victoria Peddie Prof. Raymond J. Butcher Prof. Ward T. Robinson Prof. Matthew C. J. Wilce Dr. Daouda A. K. Traore Prof. Andrew D. Abell 《Chemistry (Weinheim an der Bergstrasse, Germany)》2012,18(21):6655-6662
Experimental and theoretical data indicate that, for α‐fluoroamides, the F? C? C(O)? N(H) moiety adopts an antiperiplanar conformation. In addition, a gauche conformation is favoured between the vicinal C? F and C? N(CO) bonds in N‐β‐fluoroethylamides. This study details the synthesis of a series of fluorinated β‐peptides ( 1 – 8 ) designed to use these stereoelectronic effects to control the conformation of β‐peptide bonds. X‐ray crystal structures of these compounds revealed the expected conformations: with fluorine β to a nitrogen adopting a gauche conformation, and fluorine α to a C?O group adopting an antiperiplanar conformation. Thus, the strategic placement of fluorine can control the conformation of a β‐peptide bond, with the possibility of directing the secondary structures of β‐peptides. 相似文献