首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 380 毫秒
1.
Four enkephalin analogues (Tyr-D-Thr-Gly-Phe-Leu-Ser-CONH(2), 1, and the related O-linked glycopeptides bearing the monosaccharide beta-glucose, 2, the disaccharide beta-maltose, 3, and the trisaccharide beta-maltotriose, 4) were synthesized, purified by HPLC, and biophysical studies were conducted to examine their interactions with membrane model systems. Glycopeptide 2 has been previously reported to penetrate the blood-brain barrier (BBB), and produce potent analgesia superior to morphine in mice (J. Med. Chem.2000, 43, 2586-90 and J. Pharm. Exp. Ther. 2001, 299, 967-972). The parent peptide and its three glycopeptide derivatives were studied in aqueous solution and in the presence of micelles using 2-D NMR, CD, and molecular mechanics (Monte Carlo studies). Consistent with previous conformational studies on cyclic opioid agonist glycopeptides, it was seen that glycosylation did not significantly perturb the peptide backbone in aqueous solution, but all four compounds strongly associated with 5-30 mM SDS or DPC micelles, and underwent profound membrane-induced conformational changes. Interaction was also observed with POPC:POPE:cholesterol lipid vesicles (LUV) in equilibrium dialysis experiments. Although the peptide backbones of 1-4 possessed random coil structures in water, in the presence of the lipid phase they each formed a nearly identical pair of structures, all with a stable beta-turn motif at the C-terminus. Use of spin labels (Mn(2+) and 5-DOXYL-stearic acid) allowed for the determination of the position and orientation of the compounds relative to the surface of the micelle.  相似文献   

2.
We apply pulsed dipolar ESR spectroscopy (Ku-band DEER) to elucidate the global conformation of the Parkinson's disease-associated protein, alpha-synuclein (alphaS) bound to small unilamellar phospholipid vesicles, rodlike SDS micelles, or lipid bicelles. By measuring distances as long as approximately 7 nm between introduced pairs of nitroxide spin labels, we show that distances are close to the expectations for a single continuous helix in all cases studied. In particular, we find distances of 7.5 nm between sites 24 and 72; 5.5 nm between sites 24 and 61; and 2 nm between sites 35 and 50. We conclude that alphaS does not retain a "hairpin" structure with two antiparallel helices, as is known to occur with spheroidal micelles, in agreement with our earlier finding that the protein's geometry is determined by the surface topology rather than being constrained by the interhelix linker. While the possibility of local helix discontinuities in the structure of membrane-bound alphaS remains, our data are more consistent with one intact helix. Importantly, we demonstrate that bicelles produce very similar results to liposomes, while offering a major improvement in experimentally accessible distance range and resolution, and thus are an excellent lipid membrane mimetic for the purpose of pulse dipolar ESR spectroscopy.  相似文献   

3.
The conformational differences caused by N-glycation of the amide bond in endogenous opioid pentapeptide leucine-enkephalin (Tyr-Gly-Gly-Phe-Leu) have been explored in solution using FTIR spectroscopy, NMR and molecular modelling. The compounds studied include protected and unprotected enkephalin analogues N-alkylated at the second (Gly2) amino acid residue with a 6-deoxy-D-galactose moiety (1-3). Comparison of the amide I component bands in the FTIR spectra, measured in trifluoroethanol (TFE), CHCl3 and DMSO, revealed significant differences in the intensity as well as shifts in component band frequencies for glycopeptides 1-3. We found that only the FTIR spectrum of the fully protected compound 1 indicated the presence of a higher population of beta-turns, while the spectra of the partially protected and unprotected glycopeptides 2 and 3 reflected the dominance of unordered or open structures, with some low population of turns. The observed NOE connectivities in CDCl3 for both isomers of the fully protected compound 1, the all-trans one and another with Tyr1-Gly2 peptide bond in cis conformation, indicate the presence of a beta-like turn conformation. Molecular dynamics simulations of the glycopeptide 1 obtained by unconstrained energy minimization of trans- and cis-1 shows that one of trans form conformations is consistent with beta-turn whereas cis isomer has revealed less-compact turn.  相似文献   

4.
Intermolecular nuclear Overhauser effects (NOEs) between the integral outer membrane protein OmpX from Escherichia coli and small bicelles of dihexanoyl phosphatidylcholine (DHPC) and dimyristoyl phosphatidylcholine (DMPC) give insights into protein-lipid interactions. Intermolecular NOEs between hydrophobic tails of lipid and protein in the bicelles cover the surface area of OmpX forming a continuous cylindric jacket of approximately 2.7 nm in height. These NOEs originate only from DMPC molecules, and no NOEs from DHPC are observed. Further, these NOEs are mainly from methylene groups of the hydrophobic tails of DMPC, and only a handful of NOEs arise from methyl groups of the hydrophobic tails. The observed contacts indicate that the hydrophobic tails of DMPC are oriented parallel to the surface of OmpX and thus DMPC molecules form a bilayer in the vicinity of the protein. Thus, a bilayer exists in the small bicelles not only in the absence of but also in the presence of a membrane protein. In addition, the number of NOEs between the polar head groups of lipid molecules and protein is increased in the bicelles compared with those in micelles. This observation may be due to the closely packed head groups of the bilayer. Moreover, irregularity of hydrophobic interactions in the middle of the bilayer environment was observed. This observation together with the interactions between polar head groups and proteins gives a possible rationale for structural and functional differences of membrane proteins solubilized in micelles and in bilayer systems and hints at structural differences between protein-free and protein-loaded bilayers.  相似文献   

5.
The driving forces and conformational pathways leading to amphitropic protein-membrane binding and in some cases also to protein misfolding and aggregation is the subject of intensive research. In this study, a chimeric polypeptide, A-Cage-C, derived from α-Lactalbumin is investigated with the aim of elucidating conformational changes promoting interaction with bilayers. From previous studies, it is known that A-Cage-C causes membrane leakages associated with the sporadic formation of amorphous aggregates on solid-supported bilayers. Here we express and purify double-labelled A-Cage-C and prepare partially deuterated bicelles as a membrane mimicking system. We investigate A-Cage-C in the presence and absence of these bicelles at non-binding (pH 7.0) and binding (pH 4.5) conditions. Using in silico analyses, NMR, conformational clustering, and Molecular Dynamics, we provide tentative insights into the conformations of bound and unbound A-Cage-C. The conformation of each state is dynamic and samples a large amount of overlapping conformational space. We identify one of the clusters as likely representing the binding conformation and conclude tentatively that the unfolding around the central W23 segment and its reorientation may be necessary for full intercalation at binding conditions (pH 4.5). We also see evidence for an overall elongation of A-Cage-C in the presence of model bilayers.  相似文献   

6.
Enkephalins are endogenous neuropeptides that have opioid-like activities and compete with morphines for the receptor binding. The binding of these neuropeptides to membrane appears crucial since enkephalins interact with the nerve cell membranes to achieve bioactive conformations that fit onto multiple receptor sites (micro, delta, and kappa). Using NMR spectroscopy, we have determined the solution structure of the small opiate pentapeptide leucine enkephalin in the presence of isotropic phospholipid bicelles: phosphocholine bicelles (DMPC:CHAPS 1:4) and phosphocholine bicelles doped with ganglioside GM1 (DMPC:CHAPS:GM1 1:4:0.3). Bicelles containing GM1 were found to interact strongly with leucine enkephalin, whereas a somewhat weaker interaction was observed in the case of bicelles without GM1. Structure calculation from torsion angles, chemical shifts, and NOE-based distance constraints explored that the peptide could flexibly switch between several mu- and delta-selective conformations in both the bicelles though micro-selective conformations turned out to be geometrically preferred in each bicellar system. A detailed analysis of the structures presented supports the variance over the singly associated conformation of enkephalin in nerve cell membranes.  相似文献   

7.
The membrane‐bound tumor‐associated glycoprotein MUC1 is aberrantly glycosylated in cancer cells compared with normal cells, and is therefore considered an attractive target for cancer immunotherapy. However, tumor‐associated glycopeptides from MUC1 do not elicit a sufficiently robust immune response. Therefore, antitumor vaccines were developed, which consist of MUC1 glycopeptides as the B epitopes and immune‐stimulating toll‐like receptor 2 (TLR 2) lipopeptide ligands. These fully synthetic vaccine candidates were prepared by solid‐phase synthesis of the MUC1 glycopeptides. The Pam3Cys lipopeptide, also synthesized on solid‐phase, was C‐terminally coupled to oligovalent lysine cores, which N‐terminally incorporate O‐propargyl oligoethylene glycol acyl side chains. The MUC1 glycopeptides and lipopeptide lysine constructs were then conjugated by click chemistry to give oligovalent synthetic vaccines. Oligovalent glycopeptide–lipopeptide conjugates are considered more immunogenic than their monovalent analogues.  相似文献   

8.
Nanometric bilayer-based self-assembled micelles commonly named as bicelles, formed with a mixture of long and short chains phosphatidylcholine lipids (PC), are known to orient spontaneously in a magnetic field. This field-induced orientational order strongly depends on the molecular structure of the phospholipids. Using small-angle X-ray scattering (SAXS), we performed detailed structural studies of bicelles and investigated the orientation/relaxation kinetics in three different systems: saturated-chain lipid bicelles made of DMPC (dimyristoyl PC)/DCPC (1,2-dicaproyl PC) with and without the added paramagnetic lanthanide ions Eu(3+), as well as bicelles of TBBPC (1-tetradecanoyl-2-(4-(4-biphenyl)butanoyl)-sn-glycero-3-PC)/DCPC. The structural study confirmed the previous NMR studies, which showed that DMPC bicelles orient with the membrane normal perpendicular (defined here as "nematic" orientation) to the magnetic field, whereas they orient parallel (defined here as "smectic" orientation) to the magnetic field in the presence of Eu(3+). The TBBPC bicelles also show smectic orientation. Surprisingly, the orientational order induced in the magnetic field remains even after the magnetic field is removed, which allowed us to investigate the orientation and relaxation kinetics of different bicelle structures. We demonstrate that this kinetics is very different for all three types of bicelles at the same lipid concentration; DMPC bicelles (~40 nm diameter) with and without Eu(3+) orient faster than TBBPC bicelles (~80 nm diameter). However, for the relaxation, DMPC bicelles (nematic) lose their macroscopic orientation only after one hour, whereas both DMPC bicelles with Eu(3+) and TBBPC bicelles (smectic) remarkably stay oriented for up to several days! These results indicate that the orientation mechanism of these nanometric disks in the magnetic field is governed by their size, with smaller bicelles orienting faster than the larger bicelles. Their relaxation mechanism outside the magnetic field, however, is governed by the degree of ordering. Indeed, the angular distribution of oriented bicelles is much narrower for the bicelles with smectic orientation, and, consequently, they keep aligned for much longer time (days) than those with nematic ordering (hours) outside the magnetic field. The understanding of the orientation/relaxation kinetics, as well as the morphologies of these "molecular goniometers" at molecular and supramolecular levels, allows controlling such an unprecedented long-range and long-lived smectic ordering of nanodisks and opens a wide field of applications for structural biology or material sciences.  相似文献   

9.
An ionophore antibiotic salinomycin was studied in a membrane environment consisting of isotropic bicelles, a better model for biological membranes than micelles, and its conformation and topological orientation in bicelles was determined. 2D NMR measurements and restrained conformational search revealed that salinomycin-sodium salt in bicelles adopts an open conformation in which the orientation of the E-ring is significantly different from that in crystal and solution structures. This conformational alteration breaks an intramolecular hydrogen bond between 28-OH and 1-O, dislocates the ether oxygen of the E-ring from a coordinated position to the sodium ion observed in the crystal, and consequently weakens the complexation between salinomycin and the sodium ion. Paramagnetic relaxation experiments using doxyl-phospholipids reveal that salinomycin is embedded shallowly in bicelles, with both terminals being closer to the water interface and the olefin portion facing the bicelle interior. Measurements of intermolecular NOEs between salinomycin and phospholipids further supported this orientation. Weaker complexation with sodium ion and positional preference in the membrane polar region may facilitate the catch-and-release of metal ions at the polar/nonpolar interface of bilayers. On the basis of these findings, a model for salinomycin-assisted transport of metal ions across biological membranes is proposed.  相似文献   

10.
Holland LA  Leigh AM 《Electrophoresis》2003,24(17):2935-2939
Phospholipid micelles and bilayered micelles (bicelles) were investigated as a new media for electrokinetic chromatography. The benefit to using these additives for micellar electrokinetic chromatography (MEKC) is the potential of a simple bilayer membrane model operated with fast analysis time, and low sample injection volumes. The system is used to separate peptides/protein and is tested with a series of beta-blockers. The results suggest that bicelle electrokinetic chromatography provides selectivity and holds potential as an alternative approach to modeling membrane phenomenon.  相似文献   

11.
Herein, we describe the synthesis of seven glycosylated beta(3)-peptides, 1-7, which were designed to adopt stable 3(14)-helical conformations in aqueous solution. Such molecules are representative for a novel class of functionalized foldamers in which a natural post-translational modification is attached to an unnatural peptidomimetic backbone. Conformational studies by CD spectroscopic measurements were performed in methanol and in water (pH 7). Additionally, the influence of temperature, pH, and concentration on the ability of glycosylated beta(3)-peptides to adopt stable helical conformations were investigated. The first NMR-derived solution state structure of a glycosylated beta(3)-peptide in water is also presented.  相似文献   

12.
Certain Arctic and Antarctic ectotherm species have developed strategies for survival under low temperature conditions that, among others, consist of antifreeze glycopeptides (AFGP). AFGP form a class of biological antifreeze agents that exhibit the ability to inhibit ice growth in vitro and in vivo and, hence, enable life at temperatures below the freezing point. AFGP usually consist of a varying number of (Ala‐Ala‐Thr)n units (n=4–55) with the disaccharide β‐D ‐galactosyl‐(1→3)‐α‐N‐acetyl‐D ‐galactosamine glycosidically attached to every threonine side chain hydroxyl group. AFGP have been shown to adopt polyproline II helical conformation. Although this pattern is highly conserved among different species, microheterogeneity concerning the amino acid composition usually occurs; for example, alanine is occasionally replaced by proline in smaller AFGP. The influence of minor and major sequence mutations on conformation and antifreeze activity of AFGP analogues was investigated by replacement of alanine by proline and glycosylated threonine by glycosylated hydroxyproline. The target compounds were prepared by using microwave‐enhanced solid phase peptide synthesis. Furthermore, artificial analogues were obtained by copper‐catalyzed azide–alkyne cycloaddition (CuAAC): propargyl glycosides were treated with polyproline helix II‐forming peptides comprising (Pro‐Azp‐Pro)n units (n=2–4) that contained 4‐azidoproline (Azp). The conformations of all analogues were examined by circular dichroism (CD). In addition, microphysical analysis was performed to provide information on their inhibitory effect on ice recrystallization.  相似文献   

13.
The conformations of an acyclic, achiral enamide thymidine analogue 1 have been studied by model building and geometry calculations, as well as by NMR NOE and UV experiments. The results indicate that there are no significant barriers to rotation around any of the sigma bonds, in particular the N1-C1' enamide bond, and that the analogue should be able to accommodate conformations that mimic the conformations of natural nucleosides in A- and B-type helices quite well. For comparison the saturated analogue 2 has been prepared and built into oligonucleotides. It is shown that incorporation of 2 in oligonucleotides results in a much larger depression of the melting temperature (deltaTm -10 to -12.5 degrees C) than does incorporation of 1 (deltaTm -5 to -6.5 degrees C).  相似文献   

14.
The binding and positioning in lipid bilayers of three well-known drugs—imipramine, nicotine, and caffeine—have been studied using 1H NMR. The membrane model system consisted of “fast-tumbling” lipid bicelles, in which a bilayered lipid domain, composed of the unsaturated lipid, 1,2-dimyristelaidoyl-sn-glycero-3-phosphocholine (DMLPC) was surrounded by a rim of deuterated detergent-like lipids, consisting of 1,2-dihexanoyl-sn-glycero-3-phosphocholine (DHPC-d22). Binding and immersion depth information was obtained by three experiments. (1) 1H chemical shift perturbations, upon transfer of the amphiphiles from water to a bicelle mixture, were used to estimate regions of the amphiphiles that interact with the membrane. (2) Water contact to resolvable protons was measured through a Nuclear Overhauser Effect (NOE) between water and resolvable drug and lipid resonances. In the case of both lipids and membrane bound drugs, positive NOEs with large cross-relaxation rates were measured for most resonances originating from the membrane hydrophilic region, while negative NOEs were observed predominantly to resonances in the hydrophobic region of the membrane. (3) 1H NMR measurements of oxygen-induced (paramagnetic) spin-lattice relaxation rates, which are known to increase with membrane immersion depth, were used to corroborate conclusions based on chemical shift perturbations and water-ligand NOEs.  相似文献   

15.
Cytochrome (cyt) c transports electrons from Complex III to Complex IV in mitochondria. Cyt c is ordinarily anchored to the mitochondrial membrane through interaction with cardiolipin (CL), however its release into the cytosol initiates apoptosis. The cyt c interaction site with CL‐containing bicelles was characterized by NMR spectroscopy. Chemical shift perturbations in cyt c signals upon interaction with bicelles revealed that a relatively wide region, which includes the A‐site, the CXXCH motif, and the N‐ and C‐terminal helices, and contains multiple Lys residues, interacts cooperatively with CL. The specific cyt c–CL interaction increased with increasing CL molecules in the bicelles. The location of the cyt c interaction site for CL was similar to those for Complex III and Complex IV, thus indicating that cyt c recognizes lipids and partner proteins in a similar way. In addition to elucidating the cyt c membrane‐binding site, these results provide insight into the dynamic aspect of cyt c interactions in mitochondria.  相似文献   

16.
Houdai T  Matsumori N  Murata M 《Organic letters》2008,10(19):4191-4194
Amphidinol 3 (AM3) exhibits a potent membrane permeabilizing activity by forming pores in biological membranes. We examined the conformation and location of AM3 using isotropic bicelles, a more natural membrane model than micelles. The results show that AM3 takes turn structures at the two tetrahydropyran rings. Most of the hydrophilic region of the molecule is predominantly present in the surface, while the hydrophobic polyolefin penetrates in the bicelle interior.  相似文献   

17.
The association of transmembrane (TM) helices underlies membrane protein structure and folding. Structural studies of TM complexes are limited by complex stability and the often time-consuming selection of suitable membrane mimics. Here, methodology for the efficient, preparative scale construction of covalent TM complexes and the concomitant high-throughput selection of membrane mimics is introduced. For the employed integrin αIIbβ3 model system, the methodology identified phospholipid bicelles, including their specific composition, as the best membrane mimic. The method facilitates structure determination by NMR spectroscopy as exemplified by the measurement of previously inaccessible residual dipolar couplings and (15)N relaxation parameters.  相似文献   

18.
The structure of a water-insoluble fragment encompassing residues 282-304 of the HIV envelope protein gp41 is studied when solubilized by dihexanoyl phosphatidylcholine (DHPC) and by small bicelles, consisting of a 4:1 molar ratio of DHPC and dimyristoyl phosphatidylcholine (DMPC). Weak alignment with the magnetic field was accomplished in a stretched polyacrylamide gel, permitting measurement of one-bond (1)H-(15)N, (13)Ca-(13)C', and (13)C'-(15)N dipolar couplings, which formed the basis for determining the peptide structure. In both detergent systems, the peptide adopts an alpha-helical conformation from residue 4 through 18. In the presence of the DHPC micelles the helix is strongly curved towards the hydrophobic surface, whereas in the presence of bicelles a much weaker curvature in the opposite direction is observed.  相似文献   

19.
Membrane proteins present major challenges for structural biology. In particular, the production of suitable crystals for high-resolution structural determination continues to be a significant roadblock for developing an atomic-level understanding of these vital cellular systems. The use of detergents for extracting membrane proteins from the native membrane for either crystallization or reconstitution into model lipid membranes for further study is assumed to leave the protein with the proper fold with a belt of detergent encompassing the membrane-spanning segments of the structure. Small-angle X-ray scattering was used to probe the detergent-associated solution conformations of three membrane proteins, namely bacteriorhodopsin (BR), the Ste2p G-protein coupled receptor from Saccharomyces cerevisiae, and the Escherichia coli porin OmpF. The results demonstrate that, contrary to the traditional model of a detergent-associated membrane protein, the helical proteins BR and Ste2p are not in the expected, compact conformation and associated with detergent micelles, while the beta-barrel OmpF is indeed embedded in a disk-like micelle in a properly folded state. The comparison provided by the BR and Ste2p, both members of the 7TM family of helical membrane proteins, further suggests that the interhelical interactions between the transmembrane helices of the two proteins differ, such that BR, like other rhodopsins, can properly refold to crystallize, while Ste2p continues to prove resistant to crystallization from an initially detergent-associated state.  相似文献   

20.
The 1H NMR spectra of the antibiotic cycloheximide in CDCl3 and CD3OD have been assigned. Analyses of coupling constants and difference NOE spectra showed different conformations in these two solvents, due to changeover between intra- and inter-molecular hydrogen bonding. The twist boat cyclohexanone found in the solid state was not detected in solution. The results are compared with the solution and solid-state conformations of the antitumour agent sesbanimide A.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号