首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
The single crystals of (C2H7N4O)2[UO2(C2O4)2(H2O)] were studied by X-ray diffraction. The crystals are monoclinic, space group Pn, Z = 2, unit cell parameters: a = 9.4123(2) Å, b = 8.4591(2) Å, c = 11.8740(3) Å, β = 105.500(10)°, V = 911.02(4) Å3. The main structural units of the crystals of I are islet complex groups [UO2(C2O4)2(H2O)]2? corresponding to the crystal chemical group AB 2 01 M1 (A = UO UO 2 2+ , B01 = C2O 4 2? , M = H2O) of uranyl complexes. Uranium-containing mononuclear complexes are connected into a three-dimensional framework through the electrostatic interactions and hydrogen bonding system involving carbamyolguanidinium ions.  相似文献   

2.
[Cd(H2O)3(C5H6O4)]·2H2O ( 1 ) and Cd(H2O)2(C6H8O4) ( 2 ) were prepared from reactions of fresh CdCO3 precipitate with aqueous solutions of glutaric acid and adipic acid, respectively, while Cd(H2O)2(C8H12O4) ( 3 ) crystallized in a filtrate obtained from the hydrothermal reaction of CdCl2·2.5H2O, suberic acid and H2O. Compound 1 consists of hydrogen bonded water molecules and linear {[Cd(H2O)3](C5H6O4)2/2} chains, which result from the pentagonal bipyramidally coordinated Cd atoms bridged by bis‐chelating glutarato ligands. In 2 and 3 , the six‐coordinate Cd atoms are bridged by bis‐chelating adipato and suberato ligands into zigzag chains according to {[Cd(H2O)3](C5H6O4)2/2} and {[Cd(H2O)2](C8H12O4)2/2}, respectively. The hydrogen bonds between water and the carboxylate oxygen atoms are responsible for the supramolecular assemblies of the zigzag chains into 3D networks. Crystallographic data: ( 1 ) P1¯ (no. 2), a = 8.012(1), b = 8.160(1), c = 8.939(1) Å, α = 82.29(1)°, β = 76.69(1)°, γ = 81.68(1)°, U = 559.6(1) Å3, Z = 2; ( 2 ) C2/c (no. 15), a = 16.495(1), b = 5.578(1), c = 11.073(1) Å, β = 95.48(1)°, U = 1014.2(1) Å3, Z = 4; ( 3 ) P2/c (no. 13), a = 9.407(2), b = 5.491(1), c = 11.317(2) Å, β = 95.93(3)°, U = 581.4(2) Å3, Z = 2.  相似文献   

3.
4.
以一定比例正辛酸和月桂酸为第一配体,通过皂化法合成了脂肪酸铕配合物,并溶于甲基丙烯酸甲酯(MMA)单体通过本体聚合得到了含脂肪酸铕的PMMA光致发光聚合物材料AxByEu/PMMA(A为正辛酸根,B为月桂酸根,x、y分别表示正辛酸和月桂酸的摩尔比). 考察了不同的第二配体(咔唑、二甲基-联吡啶、邻菲罗啉、噻吩甲酰三氟丙酮HTTA)对脂肪酸铕聚合物发光性能的影响,选择出合适的第二配体HTTA,合成了A3Eu/HTTA/PMMA聚合物. 通过红外光谱、紫外光谱及荧光光谱测试技术对配合物及聚合物的结构和荧光性能进行表征. 结果表明,合成的含脂肪酸铕配合物及其聚合物均具有很好的光致发光性能,紫外激发能发射Eu3+离子的特征红光. 当HTTA的质量分数减小至MMA的0.02%时,仍能很好地促进体系的发光,且不影响聚合物本身的透明性.  相似文献   

5.
6.
7.
The crystal and molecular structure of dipotassium di‐μ‐oxo‐bis[aqua(oxalato‐O1,O2)oxomolybdenum(III)] trihydrate, K2­[Mo2O4(C2O4)2(H2O)2]·3H2O, has been determined from X‐ray diffraction data. In the dimeric anion, which has approximate twofold symmetry, each Mo atom is in a distorted octahedral coordination, being bonded to one terminal oxo‐O atom, two bridging O atoms, two O atoms from the oxalato ligand and one from the water mol­ecule. Bond lengths trans to the multiple‐bonded terminal oxo ligand are larger than those in the cis position, confirming the trans influence as a generally valid rule.  相似文献   

8.
Synthetic methods for several novel phosphoramidate compounds containing the P(O)NHC(O) bifunctional group were developed. These compounds with the general formula R1C(O)NHP(O)(N(R2)(CH2C6H5))2, where R1 = CCl2H, p-ClC6H4, p-BrC6H4, o-FC6H4 and R2 = hydrogen, methyl, benzyl, were characterized by several spectroscopic methods and analytical techniques. The effects of phosphorus substituents on the rotation rate around the P–Namine bond were also investigated. 1H NMR study of the synthesized compounds demonstrated that the presence of bulky groups attached to the phosphorus center and electron withdrawing groups in the amide moiety lead to large chemical-shift non-equivalence (ΔδH) of diastereotopic methylene protons. The crystal structures of CCl2HC(O)NHP(O)(NCH3(CH2C6H5))2, p-ClC6H4C(O)NHP(O)(NCH3(CH2C6H5))2, CCl2HC(O)NHP(O)(N(CH2C6H5)2)2 and p-BrC6H4C(O)NHP(O)(N(CH2C6H5)2)2 were determined by X-ray crystallography using single crystals. The coordination around the phosphorus center in these compounds is best described as distorted tetrahedral and the P(O) and C(O) groups are anti with respect to each other. In the compound Br-C6H4C(O)NHP(O)(N(CH2C6H5)2)2 (with two independent molecules in the unit cell), two conformers are connected to each other via two different N–H?O hydrogen bonds forming a non-centrosymmetric dimer. In the crystalline lattice of other compounds, the molecules form centrosymmetric dimers via pairs of same N–H?O hydrogen bonds. The structure of CCl2HC(O)NHP(O)(N(CH2C6H5)2)2 reveals an unusual intramolecular interaction between the oxygen of CO group and amine nitrogen.  相似文献   

9.
Reactions of a freshly prepared Zn(OH)2‐2x(CO3)x · yH2O precipitate, phenanthroline with azelaic and sebacic acid in CH3OH/H2O afforded [Zn(phen)(C9H15O4)2] ( 1 ) and [Zn2(phen)2(H2O)2(C10H16O4)2] · 3H2O ( 2 ), respectively. They were structurally characterized by X‐ray diffraction methods. Compound 1 consists of complex molecules [Zn(phen)(C9H15O4)2] in which the Zn atoms are tetrahedrally coordinated by two N atoms of one phen ligand and two O atoms of different monodentate hydrogen azelaato groups. Intermolecular C(alkyl)‐H···π interactions and the intermolecular C(aryl)‐H···O and O‐H···O hydrogen bonds are responsible for the supramolecular assembly of the [Zn(phen)(C9H15O4)2] complexes. Compound 2 is built up from crystal H2O molecules and the centrosymmetric binuclear [Zn2(phen)2(H2O)2(C10H16O4)2] complex, in which two [Zn(phen)(H2O)]2+ moieties are bridged by two sebacato ligands. Through the intermolecular C(alkyl)‐H···O hydrogen bonds and π‐π stacking interactions, the binuclear complex molecules are assembled into layers, between which the lattice H2O molecules are sandwiched. Crystal data: ( 1 ) C2/c (no. 15), a = 13.887(2), b = 9.790(2), c = 22.887(3)Å, β = 107.05(1)°, U = 2974.8(8)Å3, Z = 4; ( 2 ) P1¯ (no. 2), a = 8.414(1), b = 10.679(1), c = 14.076(2)Å, α = 106.52(1)°, β = 91.56(1)°, γ = 99.09(1)°, U = 1193.9(2)Å3, Z = 1.  相似文献   

10.
11.
The Raman and infrared spectra of solid K2(12)C2O4 x H2O are reported together with, for the first time, the corresponding Raman and infrared spectra of solid K2(13)C2O4 x H2O. Raman spectra of aqueous solutions of both isotopomers are also reported. In the solid state the oxalate anion is planar with D2h symmetry in this salt, whereas in aqueous solution the Raman spectra of the anion are best interpreted on the basis of D2d symmetry. The Raman spectra of solid (NH4)2(12)C2O4 x H2O and (NH4)2(13)C2O4 x H2O, in which the oxalate anion is twisted from planarity by 28 degrees about the CC bond, have also been recorded. Several reassignments have been made. The harmonic force field for the oxalate anion in the D2h, D2 and D2d geometries has been determined in part, and approximate values of key valence force constants determined. All the observed band wavenumbers and 12C/13C isotopic shifts are well reproduced by the force fields. The potential energy distribution of the totally symmetric normal modes of planar oxalate indicates that each mode consists of extensively mixed symmetry corrdinates and that the labels previously used for the bands seen here at 475 and 879 cm(-1) would better be described as v(CC) and deltaS(CO2), respectively, putting them in the same wavenumber order as v(NN) and deltaS(NO2) for the isoelectronic and isostructural molecule N2O4. The stretching force constants of N2O4 and planar C2O4(2-) are established to be in the order f(NN) < f(CC) and f(NO) > f(CO), consistent with the known relative bond lengths.  相似文献   

12.
Co(C2(COO)2)(H2O)4 · 2 H2O and Co(C2(COO)2)(H2O)2: Two Co‐ordination Polymers of the Acetylenedicarboxylate Dianion By reaction of CoCO3 with an aqueous solution of acetylenedicarboxylic acid and subsequent crystallisation single‐crystals of Co(C2(COO)2)(H2O)4 · 2 H2O were obtained (P21/a, Z = 2). In the solid state structure cobalt is octahedrally surrounded by four water molecules and two oxygen atoms of the carboxylate anions. These octahedra are connected to chains by the dicarboxylates. Already at ambient conditions Co(C2(COO)2)(H2O)4 · 2 H2O looses four water molecules to give Co(C2(COO)2)(H2O)2 (isotypic to Mn[C2(COO)2] · 2 H2O, C2/c, Z = 4). The cobalt cation is now octahedrally co‐ordinated by two water molecules and four oxygen atoms of the dicarboxylate ligands, which connect the Co octahedra to a three dimensional network. Thermoanalytical investigations show another mass loss at about 200 °C, which leads to non‐crystalline products. Measurements of the magnetic susceptibilities result in the expected behaviour for Co2+ in an octahedral co‐ordination (high spin, 4T1 ground state). The effective magnetic moment at room temperature is neff = 5.51 μB.  相似文献   

13.
Rubidium chromium(III) dioxalate dihydrate [di­aqua­bis(μ‐oxalato)­chromium(III)­rubidium(I)], [RbCr(C2O4)2(H2O)2], (I), and dicaesium magnesium dioxalate tetrahydrate [tetra­aqua­bis(μ‐oxalato)­magnesium(II)­dicaesium(I)], [Cs2Mg(C2­O4)2(H2O)4], (II), have layered structures which are new among double‐metal oxalates. In (I), the Rb and Cr atoms lie on sites with imposed 2/m symmetry and the unique water molecule lies on a mirror plane; in (II), the Mg atom lies on a twofold axis. The two non‐equivalent Cr and Mg atoms both show octahedral coordination, with a mean Cr—O distance of 1.966 Å and a mean Mg—O distance of 2.066 Å. Dirubid­ium copper(II) dioxalate dihydrate [di­aqua­bis(μ‐oxalato)­copper(II)­dirubidium(I)], [Rb2Cu(C2O4)2(H2O)2], (III), is also layered and is isotypic with the previously described K2‐ and (NH4)2CuII(C2O4)2·2H2O compounds. The two non‐equivalent Cu atoms lie on inversion centres and are both (4+2)‐coordinated. Hydro­gen bonds are medium‐strong to weak in the three compounds. The oxalate groups are slightly non‐planar only in the Cs–Mg compound, (II), and are more distinctly non‐planar in the K–Cu compound, (III).  相似文献   

14.
合成了标题化合物。该化合物的分子式[Ni(C5H5N)2(C7H6O2N)2]H2O(C24H24N4NiO3),分子量475.18,采用单色的MoKα (λ = 0.71073 )射线测定,共收集7408个数据,其中独立衍射点2567个(Rint = 0.0272),I > 2s(I)可观测点数1926个,结果表明该化合物属单斜晶系, 空间群C2/c其晶胞参数为: a = 14.466(2),b = 12.193(2),c = 14.072(2) ;β = 116.229(2)°,V = 2226.6(5) 3,Z = 4,Dc = 1.418 g/cm3 ,μ = 0.905 mm-1,F(000) = 992. 2个水杨醛亚胺各提供2个配位原子参与配位,2个吡啶各提供1个配位原子参与配位,该配合物是六配位的八面体构型,同时讨论了该体系中不同配位原子的配位能力的差异。  相似文献   

15.
16.
17.
林美娟  胡珍 《应用化学》2009,26(6):646-650
以一定比例正辛酸和月桂酸为第一配体,通过皂化法合成了脂肪酸铕配合物,并溶于甲基丙烯酸甲酯(MMA)单体通过本体聚合得到了含脂肪酸铕的PMMA光致发光聚合物材料AxByEu/PMMA(其中A=正辛酸根,B=月桂酸根,x、y分别表示正辛酸和月桂酸的比例)。考察了不同的第二配体(咔唑、二甲基-联吡啶、邻菲罗啉、噻吩甲酰三氟丙酮HTTA)对脂肪酸铕聚合物发光性能的影响,选择出合适的第二配体HTTA,进而合成了A3Eu/HTTA/PMMA聚合物。通过红外光谱、紫外光谱及荧光光谱对脂肪酸铕配合物及聚合物的结构和荧光性能进行表征。结果表明:合成的脂肪酸铕配合物及其聚合物均具有很好的光致发光性能,紫外激发能发射Eu3+离子的特征红光。当HTTA的质量分数减小至0.02%时,仍能很好地促进体系的发光,且不影响聚合物本身的透明性。  相似文献   

18.
19.
20.
用水热法合成了3,5-二氨基苯甲酸与Nd(Ⅲ)的配合物Nd(C7H7N2O2)3(H2O)3(1),其结构经IR,元素分析和X-射线单晶衍射仪表征。1为单核结构,属六方晶系,R3空间群,晶胞参数:a=1.887 29(18)nm,b=1.887 29(18)nm,c=0.603 53(12)nm,β=90,°γ=120°,V=1.861 7(4)nm3,Z=3,μ=2.154 mm-1,Dc=1.744 g.cm-3,R1=0.014 3,wR2=0.033 2。1中Nd(Ⅲ)与来自3个3,5-二氨基苯甲酸的6个氧原子及3个配位水的氧原子进行配位,形成9配位化合物。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号