首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Collisionally activated decomposition (CA) spectra of [C4H8O]+˙ ions and the products of their metastable decompositions are used to refine a previously presented picture of the reactions of [C4H8O]+˙ ions. Metastable [C4H8O]+˙ isomers predominantly rearrange to the 2-butanone ion and decompose by loss of methyl and ethyl, although up to 38% of the methyl losses take place by other pathways to form \documentclass{article}\pagestyle{empty}\begin{document}$ {\rm{CH}}_{\rm{2}} = {\rm{CHCH = }}\mathop {\rm{O}}\limits^{\rm{ + }} {\rm{H}}{\rm{.}} $\end{document} . The CA spectra of many of the [C4H8O]+˙ ions with the oxygen on the first carbon are very similar, consistent with those ions isomerizing largely to common structures before or after collision. However, several of these ions have unique CA spectra, so they must remain structurally distinct from the majority of the [C4H8O]+˙ ions below energies required for decomposition. The CA spectra of ions with the oxygen on the second carbon are distinct from those of ions with the oxygen on the first carbon, so there is limited interconversion of the non-decomposing forms of the two types of ions. A potential energy diagram for the reactions of metastable [C4H8O]+˙ ions is constructed from appearance energy measurements. As would be expected, the relative importances of most of the [C4H8O]+˙ isomerizations seem to be inversely related to the activation energies for those processes. Some parallels between the isomerizations of [C4H8O]+˙ ions and those of related ions are pointed out.  相似文献   

2.
3.
Present results demonstrate that α,β-shifts of the functional group carbon strongly dominate β,α-methyl shifts in [C4H8O]+˙ and [C5H10O]+˙ ions, paralleling observations of others on methyl isobutyrate ions.  相似文献   

4.
The title complexes, catena‐poly[[aqua(1,10‐phenanthroline‐κ2N,N′)­cobalt(II)]‐μ‐benzene‐1,4‐di­carboxyl­ato‐κ2O1:O4], [Co(C8H4O4)(C12H8N2)(H2O)], (I), and catena‐poly[[[(di‐2‐pyridyl‐κN‐amine)copper(II)]‐μ‐benzene‐1,4‐di­carboxyl­ato‐κ4O1,O1′:O4,O4′] hydrate], [Cu(C8H4O4)(C10H9N3)]·H2O, (II), take the form of zigzag chains, with the 1,4‐benzene­di­carboxyl­ate ion acting as an amphimonodentate ligand in (I) and a bis‐bidentate ligand in (II). The CoII ion in (I) is five‐coordinate and has a distorted trigonal–bipyramidal geometry. The CuII ion in (II) is in a very distorted octahedral 4+2 environment, with the octahedron elongated along the trans O—Cu—O bonds and with a trans O—Cu—O angle of only 137.22 (8)°.  相似文献   

5.
6.
7.
8.
9.
The title compounds, Cu(L1)(C4H8NHO) and Ni(L2)(C4H8NHO) (H2L1 = 5-bro- mosalicylaldehyde-p-nitrobenzoylhydrazone, H2L2 = 5-bromosalicylaldehyde-p-hydroxybenzo- ylhydrazone), have been obtained and characterized by single-crystal X-ray diffraction. Complex 1 belongs to the triclinic system, space group P1 with a = 8.6960(2), b = 9.957(2), c = 11.878(2) , α = 73.36(3), β = 78.25(3), γ = 82.64(3)o, V = 962.1(3) 3, Mr = 512.81, Z = 2, F(000) = 514, Dc = 1.770 g/cm3, μ(MoKα) = 3.251, R = 0.0337 and wR = 0.0846. Complex 2 is of monoclinic, space group P21/c with a = 13.313(2), b = 8.2096(1), c = 21.890(3) , β = 125.737(3)o, V = 1941.9(4) 3, Mr = 478.97, Z = 4, F(000) = 968, Dc = 1.638 g/cm3, μ(MoKα) = 3.085, R = 0.0356 and wR = 0.0817. The ligands form a satisfactory N2O2 square plane around the metal centers in two compounds. Different patterns of hydrogen bonds are observed owing to the presence of different substituents on aromatic ring of the acylhydrazone Schiff bases. In complex 1, square-planar copper(II) complexes are linked by intermolecular hydrogen bonds leading to zigzag infinite chains. In complex 2, the metal complexes are linked via hydrogen bonds to form corrugated sheets in a staggered fashion; 3D channels along the b axis are constructed through other non-covalent interactions between the neighboring layers.  相似文献   

10.
In the title compound, tetrakis­(tetra­hydro­furan)­lithium(I) tri‐μ‐phenyl­thiol­ato‐bis­[tris­(phenyl­thiol­ato)­titanate(IV)], [Li(C4H8O)4][Ti2(C6H5S)9], (I), the central structural motif of the [Ti2(SC6H5)9]? anion features a face‐sharing bi‐octa­hedron. The charge is balanced with a [Li(C4H8O)4]+ cation. The asymmetric unit contains Ti, Li and a heavily disordered tetra­hydro­furan mol­ecule on a threefold axis, and two terminal and a bridging thio­phenolate moiety and a slightly disordered tetra­hydro­furan mol­ecule on general positions.  相似文献   

11.
[Mn(H2O)4(C4N2H4)][C6H4(COO)2] – An One‐Dimensional Coordination Polymer with Chain‐like [Mn(H2O)4(C4N2H4)]n2n+ Polycations Orthorhombic single crystals of [Mn(H2O)4(C4N2H4)][C6H4(COO)2] have been prepared in aqueous solution at room temperature. Space group Imm2 (no. 44), a = 1039.00(6) pm, b = 954.46(13) pm, c = 737.86(5) pm, V = 0.73172(12) nm3, Z = 2. Mn2+ is coordinated in a octahedral manner by four water molecules and two nitrogen atoms stemming from the pyrazine molecules (Mn–O 215.02(11) pm; Mn–N 228.7(4), 230.7(4) pm). Mn2+ and pyrazine molecules form chain‐like polycations with [Mn(H2O)4(C4N2H4)]n2n+ composition. The positive charge of the polycationic chains is compensated for by phthalate anions, which are accomodated between the chains. The phthalate anions are linked by hydrogen bonds to the polycationic chains. Thermogravimetric analysis in air revealed that the loss of water of crystallisation and pyrazine occurs in two steps between 130 and 245 °C. The resulting sample was stable up to 360 °C. Further decomposition yielded Mn2O3.  相似文献   

12.
The losses of methyl and ethyl through the intermediacy of the [2-butanone]+˙ ion are shown to be the dominant metastable decomposition of 14 of 19 [C4H8O]+˙ ions examined. The ions that decompose via the [2-butanone]+˙ structure include ionized aldehydes, unsaturated and cyclic alcohols and enolic ions. [Cyclic ether]+˙ [cyclopropylmethanol]+˙ and [2-methyl-1-propen-1-ol]+˙ ions do not decompose through ionized 2-butanone. The rearrangements of various [C4H8O]+˙ ions the the 2-butanone ion were investigated by means of deuterium labeling. Those pathways involve up to eight steps. Ions with the oxygen on the end carbon rearrange to a common structure or mixture of structures. Those ions which ultimately rearrange to the [2-butanone]+˙ ion then undergo oxygen shifts from the terminal to the second and third carbons at about equal rates. However, this oxygen shift does not precede the losses of water and ethylene. Losses of water and ethylene were unimportant for ions with the oxygen initially on the second carbon. Ionized n-butanal and cyclobutanol, but not other [C4H8O]+˙ ions, undergo reversible hydrogen exchange between the oxygen and the terminal carbon. Rearrangement of ionized n-butanal to the [cyclobutanol]+˙ ion is postulated.  相似文献   

13.
14.
15.
[Cd(H2O)3(C5H6O4)]·2H2O ( 1 ) and Cd(H2O)2(C6H8O4) ( 2 ) were prepared from reactions of fresh CdCO3 precipitate with aqueous solutions of glutaric acid and adipic acid, respectively, while Cd(H2O)2(C8H12O4) ( 3 ) crystallized in a filtrate obtained from the hydrothermal reaction of CdCl2·2.5H2O, suberic acid and H2O. Compound 1 consists of hydrogen bonded water molecules and linear {[Cd(H2O)3](C5H6O4)2/2} chains, which result from the pentagonal bipyramidally coordinated Cd atoms bridged by bis‐chelating glutarato ligands. In 2 and 3 , the six‐coordinate Cd atoms are bridged by bis‐chelating adipato and suberato ligands into zigzag chains according to {[Cd(H2O)3](C5H6O4)2/2} and {[Cd(H2O)2](C8H12O4)2/2}, respectively. The hydrogen bonds between water and the carboxylate oxygen atoms are responsible for the supramolecular assemblies of the zigzag chains into 3D networks. Crystallographic data: ( 1 ) P1¯ (no. 2), a = 8.012(1), b = 8.160(1), c = 8.939(1) Å, α = 82.29(1)°, β = 76.69(1)°, γ = 81.68(1)°, U = 559.6(1) Å3, Z = 2; ( 2 ) C2/c (no. 15), a = 16.495(1), b = 5.578(1), c = 11.073(1) Å, β = 95.48(1)°, U = 1014.2(1) Å3, Z = 4; ( 3 ) P2/c (no. 13), a = 9.407(2), b = 5.491(1), c = 11.317(2) Å, β = 95.93(3)°, U = 581.4(2) Å3, Z = 2.  相似文献   

16.
17.
18.
Structural determinations of the magnesium(II) and barium(II) salts of pyromellitic acid (benzene‐1,2,4,5‐tetra­carboxyl­ic acid) are presented. Hexa­aqua­magnesium(II) benzene‐1,2,4,5‐tetra­carboxyl­ate(2−), [Mg(H2O)6](C10H4O8), (I), and penta­aqua­[benzene‐1,2,4,5‐tetra­carboxyl­ato(2−)]­barium(II), [Ba(C10H4O8)(H2O)5], (II), are both centrosymmetric and both possess a 1:1 metal–ligand ratio, but the two structures are found to differ in that the magnesium salt contains a hexaaqua cation and possesses only hydrogen‐bonding interactions between cations and anions, while the barium salt exhibits coordination of the carboxyl­ate ligand to the nine‐coordinate metal centre. In (I), both ions sit on a 2/m site symmetry, and in (II), the cation and anion are located on m and i site symmetries, respectively.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号