首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A wide range of cyclic and open-chain α,α-disubstituted α-amino acids 1a-p were prepared. The racemic N-acylated α,α-disubstituted amino acids were resolved by coupling to chiral amines 15-18 derived from (S)-phenylalanine to form diastereoisomers 19/20 or 21/22 that could be separated by crystallization and/or flash chromatography on silica gel (Scheme 3). Selective cleavage via the 1,3-oxazol-5(4H)-ones 10a-p gave the corresponding optically pure α,α-disubstituted amino-acid derivatives 11 or 12 in high yield (Scheme 3). The absolute configurations of the α,α-disubstituted amino acids were determined from X-ray structures of the diastereoisomers 20, 21g′, 22d .  相似文献   

2.
The recent upswing in peptide chemistry has been accompanied by an increasing interest in nonproteinogenic amino acids. These include the α,α-disubstituted glycines, the best known of which is Aib (2-aminoisobutyric acid, 2-methylalanine). These α-amino acids occur in natural oligopeptides such as the peptaibols, a class of membrane-active ionophores that has been isolated from fungal cultures. The twofold substitution at the α-C atom of the amino acids severely restricts the conformational freedom of the peptides and causes particular secondary structures to be favored; thus, α, α-disubstituted α-amino acids induce the formation of β turns or helices. 3-Amino-2H-azirines are ideal synthons for the construction of oligopeptides, cyclic peptides and depsipeptides (peptolides) containing such α,α-disubstituted α-amino acids. The presence of the ring strain in these molecules means that they can be used in peptide coupling without the need for additional activating reagents. Using 3-amino-2H-azirines a large array of heterocycles containing α, α-disubstituted α-amino acids as structural elements within their skeleton can be synthesized. The driving force in these reactions is the release of the strain on the three-membered ring, which usually takes place in a ring-expansion reaction. The mechanistic elucidation of these reactions, which can be quite complex, contains some surprises.  相似文献   

3.
A new route to completely protected α-methylated α-amino acids starting from alanine is described (see Scheme). These derivatives, which are obtained via base-catalyzed opening of the oxazolidinones (2S,4R)- and (2R,4S)- 2 , can be directly employed in peptide synthesis. The synthesis of both enantiomers of Z-protected α-methylaspartic acid β-(tert-butyl)ester (O4-(tert-butyl) hydrogen 2-methylaspartates (R) or (S)- 4a ), α-methyl-glutamic acid γ-(tert-butyl) ester (O5-(tert-butyl) hydrogen 2-methylglutamate (R)- or (S)- 4b ), and of Nε-bis-Boc-protected α-methyllysine (N6,N6-bis[(tert-butyloxy)carbonyl]-2-methyllysine (R)- or (S)- 4c ) is described in full detail.  相似文献   

4.
Changes in chemical shifts of olefinic protons in a number of α,β- and α,β,γ,δ-unsaturated carboxylic acids caused by ionization of the COOH group were investigated. The ionization shifts of α-H-atoms are ?0.09 to 0.07 ppm, those of β-H-atoms are 0.32?0.47 ppm. The ionization shifts of δ-H-atoms are substantially larger than those of γ-H-atoms. The ionization shifts can be used for immediate determination of the esterification site in monoesters of (2E,4Z)-2,4-hexadienedioic (muconic) acid, which are of interest in connection with synthetic studies on verrucarins. Thus, isomerization by heating in aqueous solution of monoesters of (2Z,4Z)-2,4-hexadienedioic acid yields 1-monoesters rather than 6-monoesters of (2E,4Z)-2,4-hexadienedioic acid, in accordance with the isomerization mechanism involving anchimeric assistance of the free COOH group. Solutions of the ABXY spectra of olefinic protons of monomethyl (2E,4E)- and (2Z,4Z)-2,4-hexadienedioate are reported.  相似文献   

5.
The preparation of novel electrophilic building blocks for the synthesis of enantiomerically pure compounds (EPC) is described. Thus, the 2-(tert-butyl)dioxolanones, -oxazolidinones, -imidazolidinones, and -dioxanones obtained by acetalization of pivalaldehyde with 2-hydroxy-, 3-hydroxy-, or 2-amino-carboxylic acids are treated with N-bromosuccinimide under typical radical-chain reaction conditions (azoisobuytyronitril/CCl4/reflux). Products of bromination in the α-position of the carbonyl group of the five-membered-ring acetals are isolated or identified ( 2, 5 , and 8 ; Scheme 1). The dioxanones are converted to 2H, 4H-dioxinones under these conditions ( 12 , 14 , 15 , 21 , and 22 ; Schemes 2 and 3). The products can be converted to chiral derivatives of pyruvic acid (methylidene derivatives 3 and 6 ) or of 3-oxo-butanoic and -pentanoic acid ( 16 and 23 ). The mechanism of the brominations is interpreted. The conversion of serine to enactiomcrically pure dioxanones 26–28 (Scheme 4) is also discussed.  相似文献   

6.
Selective Amide Cleavage in Peptides Containing α,α-Disubstituted α-Amino Acids A new synthesis of dipeptides with terminal α,α-disubstituted α-amino acids, using 2,2-disubtituted 3-amino-2H-azirines 1 as amino-acid equivalents, is demonstrated. The reaction of 1 with N-protected amino acids leads to the corresponding dipeptide amides in excellent yield. It is shown that the previously described selective hydrolysis (HCl, toluene, 80°, or HCl, MeCN/H2O, 80°) of the terminal amide group results in an extensive epimerization of the second last amino acid. An acid-catalyzed enolization in the intermediate oxazole-5(4H)-ones is responsible for this loss of configurational integrity. In the present paper, a selective hydrolysis of the terminal amide group under very mild conditions is described: In 3N HCl (THF/H2O 1:1), the dipeptide N,N-dimethylamides or N-methytlanilides are hydrolized at 25–35° to the optically pure dipeptides in very good yield.  相似文献   

7.
The purpose of this research was to synthesize new regular poly(ester amide)s (PEAs) consisting of nontoxic building blocks like hydrophobic α‐amino acids, α,ω‐diols, and aliphatic dicarboxylic acids, and to examine the effects of the structure of these building block components on some physico‐chemical and biochemical properties of the polymers. PEAs were prepared by solution polycondensation of di‐p‐toluenesulfonic acid salts of bis‐(α‐amino acid) α,ω‐alkylene diesters and di‐p‐nitrophenyl esters of diacids. Optimal conditions of this reaction have been studied. High molecular weight PEAs (Mw = 24,000–167,000) with narrow polydispersity (Mw/Mn = 1.20–1.81) were prepared under the optimal reaction conditions and exhibited excellent film‐forming properties. PEAs obtained are mostly amorphous materials with Tg from 11 to 59°C. α‐Chymotrypsin catalyzed in vitro hydrolysis of these new PEA substrates was studied to assess the effect of the building blocks of these new polymers on their biodegradation properties. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 391–407, 1999  相似文献   

8.
Enantioselective synthesis of optically active α-amino acids from glycine via Schiff base employing (+)-N,N-diisopropyl-10-camphorsulfonamide as a chiral template is described.  相似文献   

9.
Carbon-13 spectra of 59 α,β-unsaturated carboxylic acids have been measured. Large differential shieldings of ethylenic carbons in the cis and trans isomers of acrylic acid derivatives were found (altogether 15 isomeric Z- and E-pairs of acids were investigated). The origin of differential shieldings is complex and both molecular ground states as well as changes in excited states appear to be involved. All measured 13C chemical shifts can be described by additive parameters that provide a straightforward new technique by which structural assignments can be made for a wide variety of isomeric mono-, di- and tri- substituted α,β-unsaturated acids.  相似文献   

10.
A New Synthetic Route to β,α-Unsaturated α-Amino Acids A versatile new synthetic pathway for the preparation of βγ-unsaturated α-amino acids ( 1 ) is presented. Cu(I)-catalyzed addition of ethyl isocyanoacetate ( 2 ) to α-chloro carbonyl compounds ( 3 ) gives 5-chloroalkyl-2-oxazolin-4-carboxylates ( 4 ) in high yields. A reductive elimination on 4 by means of zinc yields the N-formyl derivatives of βγ-unsaturated α-amino carboxylates ( 5 ), which on acid hydrolysis lead to the free amino acids 1 . The five different βγ-dehydro-α-amono acids 1b-1f have been prepared by this method.  相似文献   

11.
Cooperative catalysts consisting of chiral Rh/Ag nanoparticles and Sc(OTf)3 have been developed that catalyze asymmetric 1,4‐addition reactions of arylboronic acids with α,β‐unsaturated amides efficiently. The reaction has been considered one of the most challenging reactions because of the low reactivity of the amide substrates. The new catalysts provide the desired products with outstanding enantioselectivities (>98 % ee) in the presence of low loadings (<0.5 mol %) of the catalyst.  相似文献   

12.
By heating with iron powder at 120–150° some γ-bromo-α, β-unsaturated carboxylic methyl esters, and, less smothly, the corresponding acids, were lactonized to Δ7alpha;-butenolides with elimination of methyl bromide. The following conversions have thus been made: methyl γ-bromocrotonate ( 1c ) and the corresponding acid ( 1d ) to Δα-butenolide ( 8a ), methyl γ-bromotiglate ( 3c ) and the corresponding acid ( 3d ) to α-methyl-Δα-butenolide ( 8b ), a mixture of methyl trans- and cis-γ-bromosenecioate ( 7c and 7e ) and a mixture of the corresponding acids ( 7d and 7f ) to β-methyl-Δα-butenolide ( 8c ). The procedure did not work with methyl trans-γ-bromo-Δα-pentenoate ( 5c ) nor with its acid ( 5d ). Most of the γ-bromo-α, β-unsaturated carboxylic esters ( 1c, 7c, 7e and 5c ) are available by direct N-bromosuccinimide bromination of the α, β-unsaturated esters 1a, 7a and 5a ; methyl γ-bromotiglate ( 3c ) is obtained from both methyl tiglate ( 3a ) and methyl angelate ( 4a ), but has to be separated from a structural isomer. The γ-bromo-α, β-unsaturated esters are shown by NMR. to have the indicated configurations which are independent of the configuration of the α, β-unsaturated esters used; the bromination always leads to the more stable configuration, usually the one with the bromine-carrying carbon anti to the carboxylic ester group; an exception is methyl γ-bromo-senecioate, for which the two isomers (cis, 7e , and trans, 7d ) have about the same stability. The N-bromosuccinimide bromination of the α,β-unsaturated carboxylic acids 1b , 3b , 4b , 5b and 7b is shown to give results entirely analogous to those with the corresponding esters. In this way γ-bromocrotonic acid ( 1 d ), γ-bromotiglic acid ( 3 d ), trans- and cis-γ-bromosenecioic acid ( 7d and 7f ) as well as trans-γ-bromo-Δα-pentenoic acid ( 5d ) have been prepared. Iron powder seems to catalyze the lactonization by facilitating both the elimination of methyl bromide (or, less smoothly, hydrogen bromide) and the rotation about the double bond. α-Methyl-Δα-butenolide ( 8b ) was converted to 1-benzyl-( 9a ), 1-cyclohexyl-( 9b ), and 1-(4′-picoly1)-3-methyl-Δα-pyrrolin-2-one ( 9 c ) by heating at 180° with benzylamine, cyclohexylamine, and 4-picolylamine. The butenolide 8b showed cytostatic and even cytocidal activity; in preliminary tests, no carcinogenicity was observed. Both 8b and 9c exhibited little toxicity.  相似文献   

13.
Addition of dialkyl phosphites to the nitrone 6 , formed in situ from the oxime 5 and formaldehyde gave the hydroxylamines 7 (86%) and 8 (88%), which reacted with p-benzoquinone in the presence of ethylene via the C-dialkoxyphosphonoylnitrones 9 and 10 to yield the cycloaddition products 11 – 14 (80–85%) with a diastereoselectivity of about 50%. The cycloaddition products were transformed into the monoisopropylidene derivatives 15 – 18 and the diacetates 19 – 22 . Comparison of the NMR spectra and the specific rotations of the compounds 19 – 22 with those of the corresponding α-ammo-acid derivatives 23 – 26 of known configuration indicated preferential formation of the L -isomers. The cycloaddition products were transformed in good yield into the L -α-aminophosphonic acids 29 , 30 , 36 , and 39 .  相似文献   

14.
We report the synthesis of pyrene‐ and carboxyfluorescein labeled Cα‐tetrasubstituted amino acids (TAAs). The fluorescent dye can be coupled to the TAA before or after its incorporation into a peptide sequence using a Suzuki‐type C? C bond formation.  相似文献   

15.
Both E‐ and ZN′‐alkenyl urea derivatives of imidazolidinones may be formed selectively from enantiopure α‐amino acids. Generation of their enolate derivatives in the presence of K+ and [18]crown‐6 induces intramolecular migration of the alkenyl group from N′ to Cα with retention of double bond geometry. DFT calculations indicate a partially concerted substitution mechanism. Hydrolysis of the enantiopure products under acid conditions reveals quaternary α‐alkenyl amino acids with stereodivergent control of both absolute configuration and double bond geometry.  相似文献   

16.
Enantiomerically pure cis- and trans-5-alkyl-1-benzoyl-2-(tert-butyl)-3-methylimidazolidin-4-ones ( 1, 2, 11, 15, 16 ) and trans-2-(tert-butyl)-3-methyl-5-phenylimidazolidin-4-one ( 20 ), readily available from (S)-alanine, (S)-valine, (S)-methionine, and (R)-phenylglycine are deprotonated to chiral enolates (cf. 3, 4, 12, 21 ). Diastereoselective alkylation of these enolates to 5,5-dialkyl- or 5-alkyl-5-arylimidazolidinones ( 5, 6, 9, 10, 13a-d, 17, 18, 22 ) and hydrolysis give α-alkyl-α-amino acids such as (R)- and (S)-α-methyldopa ( 7 and 8a , resp.), (S)-α-methylvaline ( 14 ), and (R)-α-methyl-methionine ( 19 ). The configuration of the products is proved by chemical correlation and by NOE 1H-NMR measurements (see 23, 24 ). In the overall process, a simple, enantiomerically pure α-amino acid can be α-alkylated with retention or with inversion of configuration through pivaladehyde acetal derivatives. Since no chiral auxiliary is required, the process is coined ‘self-reproduction of a center of chirality’. The method is compared with other α-alkylations of amino acids occurring without racemization. The importance of enantiomerically pure, α-branched α-amino acids as synthetic intermediates and for the preparation of biologically active compounds is discussed.  相似文献   

17.
Rearrangement of α-Halogen- to α′-Halogen-cyclobutanones, Key Step of a Highly Versatile Synthesis of Pyrethroids α-Halogenocyclobutanones, which are readily available by [2 + 2]-cycloaddition of haloketenes to terminal olefins (e. g. 5 → 6 ), undergo an efficient and stereoselective cine-rearrangement to α′-halogenocyclobutanones in the presence of catalysts such as tertiary amines, HX acids or quaternary ammonium salts (e. g. 6 → 7 , Table 1). Preparative as well as mechanistic aspects of the cine-rearrangement are discussed. The 2,4-cis-disubstituted cyclobutanones 7–32 thus formed represent valuable intermediates in a new synthesis of pyrethroids 1 . The X-ray structure of 2-chloro-4-(2,2,2-trichloroethyl)-3,3-dimethylcyclobutanone ( 7 ), the most important precursor of cis- 3 (X = Cl) shows the following features: a puckered cyclobutanone ring (dihedral angle 31°), 2,4-cis-di-pseudoequatorial arrangement of the chloro and trichloroethyl substituents, and an endo-deviation (0.225 Å; 11°) of the carbonyl O-atom from the plane formed by C(1), C(2) and C(4) (Fig. 2).  相似文献   

18.
The site‐selective palladium‐catalyzed three‐component coupling of deactivated alkenes, arylboronic acids, and N‐fluorobenzenesulfonimide is disclosed herein. The developed methodology establishes a general, modular, and step‐economical approach to the stereoselective β‐fluorination of α,β‐unsaturated systems.  相似文献   

19.
We report a general method for selective cross‐coupling of α,β‐unsaturated carboxylic acids with aryl tosylates enabled by versatile Pd(II) complexes. This method features the general cross‐coupling of ubiquitous α,β‐unsaturated carboxylic acids by decarboxylation. The transformation is characterized by its operational simplicity, the use of inexpensive, air‐stable Pd(II) catalysts, scalability and wide substrate scope. The reaction proceeds with high trans selectivity to furnish valuable (E)‐1,2‐diarylethenes.  相似文献   

20.
A highly practical and step‐economic α,β‐dehydrogenation of carboxylic acids via enediolates is reported through the use of allyl‐palladium catalysis. Dianions underwent smooth dehydrogenation when generated using Zn(TMP)2⋅2 LiCl as a base in the presence of excess ZnCl2, thus avoiding the typical decarboxylation pathway of these substrates. Direct access to 2‐enoic acids allows derivatization by numerous approaches.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号