首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The equilibrium geometries and fundamental frequencies of Na2S are calculated at HF, MP2(FC, FU), and MP3 with the 6–31G(d) basis set and at HF and MP2(FC, FU) with the 6–31G(d) basis set, respectively. The total energy at MP2(FU)/6–31G(d)-optimized geometry is computed at MP4 with 6–311G(d, p), 6–311 + G(d, p), and 6–311G(2df, p), at QCISD(T)/6–311G(d, p), and at MP2/6–311G(3df, 2p) levels, respectively. The dissociation energy, the atomization energy, and the heat of formation for Na2S are evaluated using the G1 and G2 models. The calculated results indicated that Na2S in its ground state was a bent structure (C2v). Electron correlation corrections on the bending angle are very significant. The equilibrium geometrical parameters are Re(Na-S) = 2.45 Å and ∠Na-S-Na = 111.13° at the MP2(FU)/6–31G(d) level. The theoretically estimated dissociation energy, total atomization energy, and heat of formation are 67.07, 117.55, and 0.35 kcal mol−1, respectively, at 298.15 K. © 1997 John Wiley & Sons, Inc.  相似文献   

2.
We study the structure and photochemistry of the glyoxal–methanol system (G–MeOH) by means of FTIR matrix isolation spectroscopy and ab initio calculations. The FTIR spectra show that the non‐hydrogen‐bonded complex, G–MeOH‐1, is present in an inert environment of solid argon. MP2/aug‐cc‐pVDZ calculations indicate that G–MeOH‐1 is the most stable complex among the five optimized structures. The interaction energy partitioned according to the symmetry‐adapted perturbation theory (SAPT) scheme demonstrates that the dispersion energy gives a larger contribution to the stabilization of a non‐hydrogen‐bonded G–MeOH‐1 complex than compared to the hydrogen‐bonded ones. The irradiation of G–MeOH‐1 with the filtered output of a mercury lamp (λ>370 nm) leads to its photo‐conversion into the hydroxyketene–methanol complex HK–MeOH‐1. The identity of HK–MeOH‐1 is confirmed by both FTIR spectroscopy and MP2/aug‐cc‐pVDZ calculations. An experiment with deuterated methanol (CH3OD) evidences that hydroxyketene is formed in a photo‐induced hydrogen exchange reaction between glyoxal and methanol. The pathway for the photo‐conversion of G–MeOH‐1 to HK–MeOH‐1 is studied by a coupled‐cluster method [CR–CC(2,3)]. The calculations confirm our experimental findings that the reaction proceeds via hydrogen atom exchange between the OH group of methanol and CH group of glyoxal.  相似文献   

3.
Three hydrogen-bonded minima on the phenol-water, C6H5OH—H2O, potential energy surface were located with 3–21G and 6–31G** basis sets at both Hartree–Fock and MP2 levels of theory. MP2 binding energies were computed using large “correlation consistent” basis sets that included extra diffuse functions on all atoms. An estimate of the effect of expanding the basis set to the triple-zeta level (multiple f functions on carbon and oxygen and multiple d functions on hydrogen) was derived from calculations on a related prototype system. The best estimates of the electronic binding energies for the three minima are –7.8, –5.0, and –2.0 kcal/mol. The consequences of uncertainties in the geometries and limitations in the level of correlation recovery are analyzed. It is suggested that our best estimates will likely underestimate the complete basis set, full CI values by 0.1–0.3 kcal/mol. Vibrational normal modes were determined for all three minima, including an MP2/6–31G** analysis for the most strongly bound complex. Computational strategies for larger phenol–water complexes are discussed. © John Wiley & Sons, Inc.  相似文献   

4.
《Electroanalysis》2017,29(6):1651-1657
Gluconobacter oxydans (G. oxydans ) cells together with an osmium redox polymer (ORP) [Osmium (2,2’‐bipyridine)2(poly‐vinylimidazole)10Cl]Cl were combined with a glassy carbon paste electrode (GCPE) to form a bioanode for a microbial fuel cell (MFC) based on G. oxydans . Although there are G.oxydans / ORP combined bioanode in the literature, as far as it is known, this system is the first one where G.oxydans /ORP bioanode is combined with a cathode and a MFC is formed. After the optimization of experimental parameters, analytical characteristics of ORP/G. oxydans /GCPE bioanode were investigated. ORP/G. oxydans /GCPE showed two linear ranges for ethanol substrate as 1.0–30 mM (R2=0.902) and 30–500 mM (R2=0.997) and analytical range as 1.0–1000 mM. Limit of detection (3.0 s/m) and limit of quantification (10 s/m) values were calculated as 1.29 mM and 4.30 mM respectively where the RSD value was 1.16 % for n=5. Combining the developed bioanode in the presence of 5.0 mM K3Fe(CN)6 mediator with a Pt wire cathode a double compartment MFC was obtained via a salt bridge. G. oxydans /GCPE bioanode based MFC had maximum power density of 0.133 μW cm−2 (at 33.5 mV), maximum current density as 8.73 μA cm−2 and OCP value of 156 mV. On the other hand, ORP/G. oxydans /GCPE based MFC showed maximum power density as 0.26 μW cm−2 (at 46.8 mV), maximum current density as 15.079 μA cm‐2 and OCP value of 176 mV.  相似文献   

5.
Ab initio molecular orbital calculations have been carried out on the various electronic states of 2,3- ( 6 ), 2,4- ( 7 ), 2,5- ( 8 ), and 3,4-diazacyclopentadienylidene ( 9 ) at the fully geometry optimized 6–31G* level, with single point calculations being carried out at the MP2/6–31G* level. The calculated geometries are interpreted in terms of the degree of occupancy and the nature of the π and σ-nonbonded MO's. At the 6–31G* level the five π-electron, π,σ-triplet states were calculated to be considerably lower in energy. At the MP2/6–31G* level, however, with 7 the six π-electron singlet state is calculated to lie only slightly above the five π-electron triplet (0.4 kcal mole−1), whereas with 8 and 9 the aromatic six π-electron singlet states are calculated to be lower in energy (9.0 and 8.1 kcal mole−1). With 3 and 9 the aromatic six π-electron σ-triplet states lie only 3.6 and 5.5 kcal mole−1 above the lowest energy states. It is concluded that, in general, the energy gained by having an electron in a lower energy σ-type MO instead of a higher energy π MO effectively offsets the energy gained by having an aromatic π system. The results are discussed in terms of the observed chemistry of 6–9 and their substituted systems.  相似文献   

6.
Mas‐related G protein‐coupled receptor X2 was a mast cell–specific receptor mediating anaphylactoid reactions by activating mast cells degranulation, and it was also identified as a target for modulating mast cell–mediated anaphylactoid and inflammatory diseases. The anti‐anaphylactoid drugs used clinically disturb the partial effect of partial mediators released by mast cells. The small molecule of Mas‐related G protein‐coupled receptor X2 specific antagonists may provide therapeutic action for the anaphylactoid and inflammatory diseases in the early stage. In this study, the Mas‐related G protein‐coupled receptor X2 high expression cell membrane chromatography was coupled online with liquid chromatography and mass spectrometry and successfully used to screen anti‐anaphylactoid components from Magnolia biondii Pamp. Fargesin and pinoresinol dimethyl ether were identified as potential anti‐anaphylactoid components. Bioactivity of these two components were investigated by β hexosaminidase and histamine release assays on mast cells, and it was found that these two components could inhibit β hexosaminidase and histamine release in a concentration‐dependent manner. This Mas‐related G protein‐coupled receptor X2 high expression cell membrane chromatography coupled online with liquid chromatography and mass spectrometry system could be applied for screening potential anti‐anaphylactoid components from natural medicinal herbs. This study also provided a powerful system for drug discovery in natural medicinal herbs.  相似文献   

7.
Ab initio calculations at the Hartree-Fock (HF) and the second-order Møller-Plesset (MP2) levels are performed for finite polyenes C2nH2n+2 to estimate the structure and dimerization energy (Edim) of polyacetylene. The effect of electron correlation on the structure of finite polyenes is analyzed in detail. The MP3/6–31G* C(DOUBLE BOND)C and C(SINGLE BOND)C bond lengths in polyacetylene are estimated by a simple extrapolation method using empirical corrections for the MP2 deficiencies, yielding values [C(DOUBLE BOND)C(MP3) ∼ 1.36 Å and C(SINGLE BOND)C(MP3) ∼ 1.44 Å] that are in a good agreement with experiment (C(DOUBLE BOND)C (DOUBLE BOND) 1.36 Å and C(SINGLE BOND)C (DOUBLE BOND) 1.44–1.45 Å). Comparison is also made with other theoretical estimates of polyacetylene structure. Edim is approximated by the energy difference between the equilibrium and hypothetical polyenic structures. It is estimated that Edim is ∼ 1.4–1.5 kcal/mol (0.06–0.07 eV) per carbon-carbon bond at the HF level with 4–21G and 6–31G* basis sets and ∼ 0.3–0.5 kcal/mol (0.013–0.022 eV) at the MP2 level with the 6–31G* basis set. It is concluded that Edim is very sensitive to the level of approximation employed so that a proper treatment of electron correlation is essential to obtain a reliable estimate of the dimerization energy. © 1997 John Wiley & Sons, Inc.  相似文献   

8.
Two‐dimensional graphene–CdS (G–CdS) semiconductor hybrid nanosheets were synthesized in situ by graphene oxide (GO) quantum wells and a metal–xanthate precursor through a one‐step growth process. Incorporation of G–CdS nanosheets into a photoactive film consisting of poly[4,8‐bis‐(2‐ethyl‐hexyl‐thiophene‐5‐yl)‐benzo[1,2‐b:4,5‐b]dithiophene‐2,6‐diyl]‐alt‐[2‐(2‐ethyl‐hexanoyl)‐thieno[3,4‐b]thiophen‐4,6‐diyl] (PBDTTT‐C‐T) and [6,6]‐phenyl C70 butyric acid methyl ester (PC70BM) effectively decreases the exciton lifetime to accelerate exciton dissociation. More importantly, the decreasing energy levels of PBDTTT‐C‐T, PC70BM, and G–CdS produces versatile heterojunction interfaces of PBDTTT‐C‐T:PC70BM, PBDTTT‐C‐T:G–CdS, and PBDTTT‐C‐T:PC70BM:G–CdS; this offers multi‐charge‐transfer channels for more efficient charge separation and transfer. The charge transfer in the blend film also depends on the G–CdS nanosheet loadings. In addition, G–CdS nanosheets improve light utilization and charge mobility in the photoactive layer. As a result, by incorporation of G–CdS nanosheets into the active layer, the power‐conversion efficiency of inverted solar cells based on PBDTTT‐C‐T and PC71BM is improved from 6.0 % for a reference device without G–CdS nanosheets to 7.5 % for the device with 1.5wt % G–CdS nanosheets, due to the dramatically enhanced short‐circuit current. Combined with the advantageous mechanical properties of the PBDTTT‐C‐T:PC70BM:G–CdS active layer, the novel CdS‐cluster‐decorated graphene hybrid nanomaterials provide a promising approach to improve the device performance.  相似文献   

9.
Amphiphilic dendritic–linear–dendritic triblock copolymers based on hydrophilic linear poly(ethylene oxide) (PEO) and hydrophobic dendritic carbosilane were synthesized with a divergent approach at the allyl end groups of diallyl‐terminated PEO. Their micellar characteristics in an aqueous phase were investigated with dynamic light scattering, fluorescence techniques, and transmission electron microscopy. The block copolymer with the dendritic moiety of a third generation could not be dispersed in water. The block copolymers with the first (PEO–D ‐Si‐1G) and second (PEO–D ‐Si‐2G) generations of dendritic carbosilane blocks formed micelles in an aqueous phase. The critical micelle concentrations of PEO–D ‐Si‐1G and PEO–D ‐Si‐2G, determined by a fluorescence technique, were 27 and 16 mg/L, respectively. The mean diameters of the micelles of PEO–D ‐Si‐1G and PEO–D ‐Si‐2G, measured by dynamic light scattering, were 170 and 190 nm, respectively, which suggests that the micelles had a multicore‐type structure. The partition equilibrium constants of pyrene in the micellar solution increased with the increasing size of the dendritic block (e.g., 7.68 × 104 for PEO–D ‐Si‐1G and 9.57 × 104 for PEO–D ‐Si‐2G). The steady‐state fluorescence anisotropy values (r) of 1,6‐diphenyl‐1,3,5‐hexatriene were 0.06 for PEO–D ‐Si‐1G and 0.09 for PEO–D ‐Si‐2G. The r values were lower than those of the linear polymeric amphiphiles, suggesting that the microviscosity of the dendritic micellar core was lower than that of the linear polymeric analogues. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 918–926, 2001  相似文献   

10.
The potential energy surface(PES) for the reaction of Cl atom with HCOOH is predicted using ab initio molecular orbital calculation methods at UQCIDS(T,full)6-311 G(3df,2p)//UMP2(full)/6-311 G(d,P) level of theory with zero-point vibrational energy (ZPVE) correction.The calculated results show that the reaction mechanism of Cl atom with formic acid is a C-site hydrogen abstraction reaction from cis-HOC(H)O molecule by Cl atom with a 3.73kJ/mol reaction barrier height,leading to the formation of cis-HOCO radical which will reacts with Cl atom or other molecules in such a reaction system.Because the reaction barrier height of O-site hydrogen abstraction reaction from cis-HOC(H)O molecule by Cl atom which leads to the formation of HCO2 radical is 67.95kJ/mol,it is a secondary reaction channel in experiment,This is in good agreement with the prediction based on the previous experiments.  相似文献   

11.
To develop a new solvent‐impregnated resin (SIR) system for removal of phenols from water, the complex formation of dimethyldodecylamine N‐oxide (DMDAO), trioctylamine N‐oxide (TOAO), and tris(2‐ethylhexyl)amine N‐oxide (TEHAO) with phenol (PhOH) and thiophenol (PhSH) is studied. To this end we use isothermal titration calorimetry (ITC) and quantum chemical modeling (on B3LYP/6‐311G(d,p)‐optimized geometries: B3LYP/6‐311+G(d,p), B3LYP/6‐311++G(2d,2p), MP2/6‐311+G(d,p), and spin component scaled (SCS) MP2/6‐311+G(d,p); M06‐2X/6‐311+G(d,p)//M06‐2X/6‐311G(d,p), MP2 with an extrapolation to the complete basis set limit (MP2/CBS), as well as CBS‐Q). The complexes are analyzed in terms of structural (e.g., bond lengths) and electronic elements (e.g., charges). Furthermore, complexation and solvent effects (in benzene, toluene, and mesitylene) are investigated by ITC measurements, yielding binding constants K, enthalpies ΔH0, Gibbs fre energies ΔG0, and entropies ΔS0 of complex formation, and stoichiometry N. The ITC measurements revealed strong 1:1 complex formation between both DMDAO–PhOH and TOAO–PhOH. The binding constant (K=1.7–5.7×104 M ?1) drops markedly when water‐saturated toluene was used (K=5.8×103 M ?1), and π–π interaction with the solvent is shown to be relevant. Quantum mechanical modeling confirms formation of stable 1:1 complexes with linear hydrogen bonds that weaken on attachment of electron‐withdrawing groups to the amine N‐oxide moiety. Modeling also showed that complexes with PhSH are much weaker than those with PhOH, and in fact too weak for ITC determination. CBS‐Q incorrectly predicts equal or even higher binding enthalpies for PhSH than for PhOH, which invalidates it as a benchmark for other calculations. Data from the straightforward SCS‐MP2 method without counterpoise correction show very good agreement with the MP2/CBS values.  相似文献   

12.
Two semiempirical methods (MNDO and AM1), a molecular mechanics technique (MM2) and two ab initio approaches (6–31G* full optimization and 3–21G/6–31G*) were used to calculate the ordering of and energy difference between conformers in 1,3-dichloropropane. The semiempirical methods did not order the conformers properly or predict correct energy differences. Both ab initio methods ordered the conformers and predicted energy differences correctly, with the 6–31G* full optimization performing slightly better. The MM2 results were presented for calculations involving a force field with no hydrogens and a full force field of all atoms. The full force field properly ordered the conformers but did not correctly predict the energy differences. The nonhydrogen field ordered the conformers based on the Cl…Cl nonbonded distance. The data show that conformer stability is not a simple matter of maximizing the Cl…Cl nonbonded distance, but is also related to some other stabilizing interaction(s).  相似文献   

13.
14.
Hybrid linear‐dendritic ABA polymers, where A and B are dendritic and linear polymers, respectively, were synthesized in a single step via step‐growth polymerization of 4,4′‐difluorodiphenylsulfone and bisphenol A using arylether ketone dendrons of first and second generations (G1‐OH and G2‐OH) as monofunctional end‐cappers. These G1 and G2‐terminated poly(ether sulfone)s (G1‐PESs and G2‐PESs) were characterized by 1H NMR, SEC, DSC, TGA, melt rheology, and tensile tests. The comparison of the glass transition temperatures (Tgs) of these polymers with those of t‐butylphenoxy‐terminated polysulfones reveal that the G1‐ and G2‐PESs have lower Tgs at all molecular weights investigated. However, a plot of Tg versus 1/Mn shows that the difference between the three series becomes negligible at infinite molecular weight and agrees to the chain end free volume theory. The melt viscosities of G1‐PES and G2‐PES with high molecular weights do not show a Newtonian region and, in the high frequency region, their viscosities are lower than that of the control while the stress–strain properties are comparable to those of the control, suggesting that it is possible to reduce the high shear melt viscosity of a PES without affecting the stress–strain properties by introducing bulky dendritic terminal groups. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 958–969, 2008  相似文献   

15.
This article describes the syntheses and solution behavior of model amphiphilic dendritic–linear diblock copolymers that self‐assemble in aqueous solutions into micelles with thermoresponsive shells. The investigated materials are constructed of poly(benzyl ether) monodendrons of the second generation ([G‐2]) or third generation ([G‐3]) and linear poly(N‐isopropylacrylamide) (PNIPAM). [G‐2]‐PNIPAM and [G‐3]‐PNIPAM dendritic–linear diblock copolymers have been prepared by reversible addition–fragmentation transfer (RAFT) polymerizations of N‐isopropylacrylamide with a [G‐2]‐ or [G‐3]‐based RAFT agent, respectively. The critical micelle concentration (cmc) of [G‐3]‐PNIPAM220, determined by surface tensiometry, is 6.3 × 10?6 g/mL, whereas [G‐2]‐PNIPAM235 has a cmc of 1.0 × 10?5 g/mL. Transmission electron microscopy results indicate the presence of spherical micelles in aqueous solutions. The thermoresponsive conformational changes of PNIPAM chains located at the shell of the dendritic–linear diblock copolymer micelles have been thoroughly investigated with a combination of dynamic and static laser light scattering and excimer fluorescence. The thermoresponsive collapse of the PNIPAM shell is a two‐stage process; the first one occurs gradually in the temperature range of 20–29 °C, which is much lower than the lower critical solution temperature of linear PNIPAM homopolymer, followed by the second process, in which the main collapse of PNIPAM chains takes place in the narrow temperature range of 29–31 °C. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1357–1371, 2006  相似文献   

16.
The geometries and electronic properties of substrates, transition structures (TS), and product radicals in modeled elementary propagation reactions were studied for the styrene–acrylonitrile monomer system by use of quantum‐mechanical calculations: (DFT/B3‐LYP/6–31G(d), ROMP2/6–311+G(3df,2p)//DFT/B3‐LYP/6–31G(d), and DFT/B3‐LYP/6–311+G(3df,2p)//DFT/B3‐LYP/6–31G(d)) and for some parameters, the high‐level composite method G3 (Gaussian‐3, G3/MP2). Activation enthalpies (ΔHact) and reaction enthalpies (ΔHr) for modeled propagation reactions at 298.15 K were evaluated. The enthalpy of activation energy (ΔHact, kJ/mol) for the investigated elementary reactions rises for the B3‐LYP calculation in the following order: (CH3A?+S) < (CH3A?+A) < (CH3S?+A) < (CH3S?+S). For three propagation reactions, (CH3A?+A), (CH3A?+S), and (CH3S?+A), correlation between reaction enthalpy and enthalpy of activation suggests weak or negligible polar effects reflecting the Evans–Polanyi relation. However, from the electron affinities and ionization energies values data, it is not excluded that at least for [CH3A?+S[b]] and [CH3S?+A[b]] reactions, nucleophilic and electrophilic polar effects, respectively, can also be expected. The dependencies between TS geometries, electronic parameters, and enthalpic effects suggest the presence of a steric factor in all TS, including its exceptionally high contribution to the activation enthalpy for the CH3S?+S addition. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 1827–1844, 2005  相似文献   

17.
Density functional theory (DFT) and ab initio methods were used to study gas‐phase pyrolytic reaction mechanisms of iV‐ethyl, N‐isopropyl and N‐t‐butyl substituted 2‐aminopyrazine at B3LYP/6–31G* and MP2/6–31G*, respectively. Single‐point energies of all optimized molecular geometries were calculated at B3LYP/6–311 + G(2d,p) level. Results show that the pyrolytic reactions were carried out through a unimolecular first‐order mechanism which were caused by the migration of atom H(17) via a six‐member ring transition state. The activation energies which were verified by vibrational analysis and correlated with zero‐point energies along the reaction channel at B3LYP/6–311 + G(2d,p) level were 252.02 kJ. mo?1 (N‐ethyl substituted), 235.92 kJ‐mol?1 (N‐t‐isopropyl substituted) and 234.27 kJ‐mol?1 (N‐t‐butyl substituted), respectively. The results were in good agreement with available experimental data.  相似文献   

18.
The structures and relative stabilities of furoxan and some of its isomers, e.g., the 1,2-dinitrosoethylenes, have been determined by means of ab initio Hartee–Fock and Møller–Plesset calculations. Geometries were optimized at the HF/3-21G, HF/6-31G* and MP2/6-31G* levels, and subsequently used for computing MP2/6-31G*, MP3/6-31G*, and MP4/6-31G* energies. The results are markedly affected by the inclusion of electronic correlation, which renders three of the isomers unstable. It also emphasizes the importance of a zwitterionic contribution to the structure of furoxan, which promotes ring-opening through a cis 1,2-dinitrosoethylene intermediate/transition state that has an MP4/6-31G*//MP2/6-31G* energy that is 31.6 kcal/mol above furoxan.  相似文献   

19.
We report a comparison of theoretical and experimental proton affinities at nitrogen and oxygen sites within a series of small molecules. The calculated proton affinities are determined using the semiempirical methods AM 1, MNDO , and PM 3; the ab initio Hartree–Fock method at the following basis levels: 3-21G //3-21G , 3-21+G //3-21G , 6-31G *//6-31G *, and 6-31+G (d, p)//6-31G *; and Møller–Plesset perturbation calculations: MP 2/6-31G *//6-31G *, MP 3/6-31G *//6-31G *, MP 2/6-31G +(d, p)//6-31G *, MP 3/6-31G +(d, p)//6-31G *, and MP 4(SDTQ )/6-31G +G (d, p)//6-31G *. The semiempirical methods have more nonsystematic scatter from the experimental values, compared to even the minimal 3-21G level ab initio calculations. The thermodynamically corrected 6-31G *//6-31G * proton affinities provide acceptable results compared to experiment, and we see no significant improvement over 6-31G *//6-31G * in the proton affinities with any of the higher-level calculations. © 1992 John Wiley & Sons, Inc.  相似文献   

20.
Hydrogen exchange reactions between lithium and sodium compounds, MX (M=Li: X=H, CH3, NH2, OH, F; M=Na: X=CH3), and the corresponding hydrides, HX, have been modelled by means of ab initio calculations including electron correlation and zero point energy (ZPE) corrections. Small or no activation barriers (from the initial complexes) are encountered in systems involving lone pairs (10.8, 2.4, 0.0 kcal/mol for X=NH2, OH, F, respectively). Since the association energies of the initial complexes are much larger (21.0, 20.4, 23.5 kcal/mol, respectively; MP2/6–31+G*/6–31+G* + ZPE), such exchange reactions should occur spontaneously in the gas phase. The methyl systems (X=CH3) have the largest barriers: 26.7 (M=Li) and 31.7 (M=Na) kcal/mol (MP2/6–31+G*/6–31G* + ZPE), and the initial complexes are only weakly bound. The significance of these systems as models for hydrogen exchange reactions in complexes of electropositive transition metals is discussed. However, the gegenion-free exchange of hydrogen between CH3 and CH4 has a much lower, 11.8 kcal/mol barrier (MP2/6–31+G*/6–31+G* + ZPE). All the transition structures are highly ionic (charges on the metals > +0.8). The effect of aggregation has been considered by examining the hydrogen exchange between (LiX)2 and HX(X=H, CH3, NH2, OH). Although these dimer reactions formally involve six, instead of four electrons, no “aromatic” preference is observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号