首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Photochemistry of 5,6-Epoxydienes and of Conjugated 5,6-Epoxytrienes On singulet excitation (δ = 254 nm) the 5,6-epoxydiene 6 and the conjugated 5,6-epoxytrienes 7 and 8 exclusively give products arising from cleavage of the C, C-bond of the oxirane (cf. 6 → 9 , 10 , 11 ; 7 → (E)- 15 , 16 , 17 ; 8 → 18 (A+B) , 19 (A+B) , 20 , 21 ). The dihydrofuran compounds 11 and (E/Z)- 15 are formed by cyclization of a ketonium-ylide a and d , respectively. Photolysis of a gives the carbene b which yields the cyclopropene 9 , whereas d forms photochemically the carbenes f and g which yield the methano compounds 16 and 17 . The isomeric cyclopropene derivatives 20 and 21 are products of the intermediates h and i , respectively, which are formed by photolysis of the ylide e . The cyclopropene 21 isomerizes by intramolecular cycloadditions to 18 (A+B) and 19 (A+B) . - On triplet excitation (λ?LD nm; 280 nm; acetone) 6 undergoes cleavage of the C(5), O-bond and isomerizes to 12 and 14 . However, 7 is converted by cleavage of the C, C-bond of the oxirane to yield 15 . On treatment with BF3O(C2H5)2 6 gives 14 , whereas 7 yields 22 , and 8 forms 23 and 24 .  相似文献   

2.
Oxy anions 3 generated from 1,2-dihydrocyclobutabenzen-1-ones 1 through addition of a charged nucleophile or from 1-hydroxy-1,2-dihydrocyclobutabenzenes 2 by deprotonation with base lead to stable products through distal and/or proximal cleavage of the strained four-membered ring via benzyl carbanion 4 and/or aryl carbanion 5. A systematic study of this process reveals the relative stability of the two isomeric carbanions 4 and 5 as a key factor in determining the course of the ring-cleavage reaction. While benzyl carbanions 4 can be trapped with carbon electrophiles, attempts at trapping aryl carbanions 5 with electrophiles other than H+ failed. In protic solvents, the magnesium salt of the tertiary alcohol 2 shows an increased rate of proximal cleavage as compared to its alkali salts. From this, we conclude that, in contrast to benzyl carbanions 4 , free aryl carbanions 5 are of transient existence only. Proximal C,C-bond cleavage seems to occur either through protonation of 5 from a fast, reversible equilibrium 3 ? 5 in which 3 strongly predominates, or in protic solvents possibly even through a rate-limiting protonation of 3 at the aromatic C-atom, bypassing free anion 5 altogether. Thus, additional factors other than just the relative stability of isomeric carbanions 4 and 5 are of importance in determining the regiochemistry of the base-induced C,C-bond cleavage in ketones 1 and in alcohols 2 .  相似文献   

3.
Using readily accessible 10-sulfonamido-isoborneols as regenerable, chiral auxiliaries, highly face-selective C–C-bond formations at Cα and Cβ of carboxylates could be conveniently achieved. Thus, conjugated additions of RCu to enoates ( 1 → 2 ) furnished, after saponification, β-substituted carboxylic acids 3 in 94–98% e.e. Similarly, propionates 12 yielded after deprotonation, enolate alkylation, and reductive ester cleavage the (R)-alcohols 15 in 78–98% e.e. The acid (+)- 3e was converted to the pheromone (–)- 11 .  相似文献   

4.
Indoles are an important structural motif that is commonly found in biologically active molecules. In this work, conditions for divergent couplings between imidamides and acceptor–acceptor diazo compounds were developed that afforded NH indoles and 3H‐indoles under ruthenium catalysis. The coupling of α‐diazoketoesters afforded NH indoles by cleavage of the C(N2)?C(acyl) bond whereas α‐diazomalonates gave 3H‐indoles by C?N bond cleavage. This reaction constitutes the first intermolecular coupling of diazo substrates with arenes by ruthenium‐catalyzed C?H activation.  相似文献   

5.
A regioselective synthesis of symmetrical and unsymmetrical benzopinacolones through aerobic dehydrogenative αarylation at the tertiary sp3 C?H bond of substituted 1,1‐diphenylketones with aromatic and heteroaromatic compounds, in the presence of K2S2O8 in CF3COOH at room temperature, is described. The reaction is proposed to go via a carbocation intermediate, which could be generated directly from cleavage of the sp3 C?H bond of 1,1‐diphenylketone. Subsequent αarylation was achieved at the methene sp3 carbon atom of the substituted ketone. A variety of substituted aromatic and heteroaromatic compounds were compatible with this reaction. In addition, benzopinacolones were converted into sterically hindered, tetrasubstituted alkenes and polycyclic aromatic compounds.  相似文献   

6.
Cob(I)alamin as Catalyst. 7. Communication [1]. Retention of Configuration during the Reductive Cleavage of the Co, C-Bond of an Alkylcobalamin Using catalytic amounts of cob(I)alamin (see Scheme 1) in aqueous acetic acid (?)-α-pinen ( 1 ) and (?)-β-pinen ( 2 ; s. Scheme 3) have been reduced. A large excess of metallic zinc served as electron source. The saturated products 5–8 (see Scheme 3) and the mechanistic aspects of their generation are discussed. The relative amounts of cis- ( 5 ) and trans-pinane ( 6 ) lead to the conclusion that the reductive cleavage of the Co, C-bond accompanied by H+ transfer in an alkylcobalamin occurs with retention of configuration. This result is in agreement with the corresponding cleavage of the Co,C-bond of an alkyl[hydroxy-diazaoctahydroporphinato]cobalt complex [9].  相似文献   

7.
The cleavage of C? C bonds in π‐conjugated systems is an important method for controlling their shape and coplanarity. An efficient way for the cleavage of an aromatic C? C bond in a typical buckybowl corannulene skeleton is reported. The reaction of 2‐pyridylcorannulene with a catalytic amount of IrCl3?n H2O in ethylene glycol at 250 °C resulted in a structural transformation from the curved corannulene skeleton to a strain‐free flat benzo[ghi]fluoranthene skeleton through a site‐selective C? C cleavage reaction. This cleavage reaction was found to be driven by both the coordination of the 2‐pyridyl substituent to iridium and the relief of strain in the curved corannulene skeleton. This finding should facilitate the design of carbon nanomaterials based on C? C bond cleavage reactions.  相似文献   

8.
Unusual cleavage of P?C and C?H bonds of the P2N2 ligand, in heteroleptic [Ni(P2N2)(diphosphine)]2+ complexes under mild conditions, results in the formation of an iminium formyl nickelate featuring a C,P,P‐tridentate coordination mode. The structures of both the heteroleptic [Ni(P2N2)(diphosphine)]2+ complexes and the resulting iminium formyl nickelate have been characterized by NMR spectroscopy and single‐crystal X‐ray diffraction analysis. Density functional theory (DFT) calculations were employed to investigate the mechanism of the P?C/C?H bond cleavage, which involves C?H bond cleavage, hydride rotation, Ni?C/P?H bond formation, and P?C bond cleavage.  相似文献   

9.
Creosol (1), bicreosol (4) and other monomeric and dimeric creosols are oxidized in 0.25M-NaOH (5 equivalents base per phenolic hydroxyl group) by molecular oxygen at 70°C. Creosol is fragmented under these conditions to low molecular weight products without previous dimerization. The importance of fragmentation processes without cleavage of the C?C-bond between the oxygen substituted ring atoms in the case of bicreosol, and its considerable stability against oxidation compared with other compounds investigated can be explained by the ability of the monoanion of4 to exist in a conformation allowing hydrogen bonding between the phenolic oxygens of the two rings.  相似文献   

10.
The title compound 1 , which can be regarded as a synthetic equivalent of substituted 1,1,1-trifluoroacetone 2 , is prepared by Zn-induced reductive addition of 1,1,1-trichloro-2,2,2-trifluoroethane ( 3 ) to formaldehyde ( 4 ). A brief survey of the scope of this C? C-bond formation leading to a variety of new CF3-containing synthetic building blocks is also given.  相似文献   

11.
The phosphorus-carbon bond in various P-triphenylmethyl-substituted phosphorus compounds of simple as well as more complex structure can be cleaved selectively by treatment with Lewis acids, halogens (or halogen transfer agents), and hydrogen halides. The course of the reaction can be followed easily by NMR spectroscopy, in certain cases this P–C-bond cleavage can be used as a synthetic principle for phosphorus difluorohalides, F2PHal (Hal = Cl, Br, F). In the presence of the appropiate structural elements, cleavage of P–P-bonds or rearrangements are observed.  相似文献   

12.
The present work is directed toward preparation, structure and optical property characterization of tetrazole-containing Cu(I) compounds. By means of the alternating-current electrochemical technique copper(I) π,σ-compounds with 1-(4-methylphenyl)- (Matht), 1-(3-chloro-4-methylphenyl)- (Chmatht) and 1-[2-(trifluoromethyl)phenyl]- (Tfmatht) 5-(allylthio)-1H-tetrazoles were obtained in a single crystal form and structurally characterized by X-ray diffraction and Raman spectroscopy. Matht and Chmatht ligands, being attached to the Cu(I) through S-allylic C?=?C-bond and two tetrazole N-atoms, form stable centrosymmetric dimers [Cu2(Matht)2(H2O)2](BF4)2 and [Cu2(Chmatht)2(СlO4)2]. The presence of an electron acceptor trifluoromethyl group promotes formation of the monomeric [Cu(Tfmatht)2]BF4 and [Cu(Tfmatht)(NH2SO3)(MeOH)] compounds. The compounds were investigated by means of Raman spectroscopy, third-order nonlinear optics and DFT calculations.  相似文献   

13.
1H NMR spectra of several aliphatic and phenyl substituted alkenediynes have been obtained. Chemical shifts and coupling constants of these compounds are discussed in conjunction with some compounds described in the literature. Chemical shifts of the protons from isomeric alkenediynes R? C?C? C?C? CH?CH2, R? CH?CH? C?C? C?CH and R? CH?CH? C?C? C?C? CH3 (R = H, alkyl, C6H5, C6H4OCH3-p) are well correlated with cis/trans-isomerism and electronic effects of substituents at the C?C bond. The coupling constants were found to be only slightly dependent on the substitution at the double bond. We could resolve couplings over a maximum of eight bonds in the alkenediyne system.  相似文献   

14.
Various aryl‐, alkenyl‐, and/or alkyllithium species reacted smoothly with aryl and/or benzyl ethers with cleavage of the inert C?O bond to afford cross‐coupled products, catalyzed by commercially available [Ni(cod)2] (cod=1,5‐cyclooctadiene) catalysts with N‐heterocyclic carbene (NHC) ligands. Furthermore, the coupling reaction between the aryllithium compounds and aryl ammonium salts proceeded under mild conditions with C?N bond cleavage in the presence of a [Pd(PPh3)2Cl2] catalyst. These methods enable selective sequential functionalizations of arenes having both C?N and C?O bonds in one pot.  相似文献   

15.
By LiAlH4 (Cl3Si)2CH2, (Cl2Si? CH2)2SiCl2 are reduced to (H3Si)2CH2 (a), (H3Si? CH2)2SiH2 (b) and (H2Si? CH2)3(c). However with the compounds (Cl3Si)2CCl2, (Cl3Si? CCl202SiCl2 and (Cl2Si? CCl2)3 cleavages of the Si? C-bond and reduction of the CCl-groups occur apart from the normal reduction of the Si-Cl-groups to (H3Si)2CCl2 (d), (H3SiCCl2)2SiH2 (e) and (H2Si? CCl2)3. Excess LiAlH4 favours this cleavage, the exact amount of a quarter of a mole LiAlH4 per SiCl-group allows the formation of (d), (e), (f). The cleavage of (e) is in accordance with: (1), (2),(3). Therefore SiH34 and (H3Si)2CCl2 are the main-reaction-products and CH3SiH3 is formed acc. to equ. (3). Because of the cleavage of (H2Si? CCl2)3 with LiAlH4 H3Si? CCl2? SiH2? CH3and H3Si? CH2? SiH2? CH2? SiH2? CH3 are preferentially formed after the hydrolysis. The CH2-containing compounds (a), (b), (c) cannot be cleaved in an analogous reaction.  相似文献   

16.
On triplet excitation (E)- 2 isomerizes to (Z)- 2 and reacts by cleavage of the C(γ), O-bond to isomeric δ-ketoester compounds ( 3 and 4 ) and 2,5-dihydrofuran compounds ( 5 and 19 , s. Scheme 1). - On singulet excitation (E)- 2 gives mainly isomers formed by cleavage of the C(γ), C(δ)-bond ( 6–14 , s. Scheme 1). However, the products 3–5 of the triplet induced cleavage of the C(γ), O-bond are obtained in small amounts, too. The conversion of (E)- 2 to an intermediate ketonium-ylide b (s. Scheme 5) is proven by the isolation of its cyclization product 13 and of the acetals 16 and 17 , the products of solvent addition to b . - Excitation (λ = 254 nm) of the enol ether (E/Z)- 6 yields the isomeric α, β-unsaturated ε-ketoesters (E/Z)- 8 and 9 , which undergo photodeconjugation to give the isomeric γ, δ-unsaturated ε-ketoesters (E/Z)- 10 . - On treatment with BF3O(C2H5)2 (E)- 2 isomerizes by cleavage of the C(δ), O-bond to the γ-ketoester (E)- 20 (s. Scheme 2). Conversion of (Z)- 2 with FeCl3 gives the isomeric furan compound 21 exclusively.  相似文献   

17.
A new class of bidentate, aza‐based phosphinic amide ligands of the type RN(H)P(?O)(2‐py)2 (2‐py = 2‐pyridyl) was synthesized within minutes via a one‐pot process including Staudinger reaction of an organic azide (RN3) with 2‐pyridylphosphines, followed by partial, unprecedented hydrolysis under loss of one aromatic substituent. The structure of the unusual‐hydrolysis product H2C?CH(CH2)9N(H)P(?O)(2‐py)2 ( 5a ) was characterized by IR, 1H‐ and 31P‐NMR, as well as by X‐ray crystal‐structure analysis (Figure). The tetrahedral P‐atom was found to be surrounded by a trigonal‐pyramidal arrangement of the substituents. To gain insight into the formation of these novel phosphinic amides, a series of intermediate iminophosphoranes, H2C?CH(CH2)9N?P(Ar)n(2‐py)3 ? n (n = 0–3), compounds 1a – 1f , were synthesized, and their hydrolyses were studied. All tested compounds followed the classical hydrolysis route of P?N cleavage under acidic conditions. Sequential hydrolysis to 5a – 5d only occurred under either basic conditions or in wet MeCN as solvent. Notably, H2C?CH(CH2)9N?P(C6H5)(4‐MeO‐2‐py)2 ( 1c ) was hydrolyzed at a much slower rate compared to its analogue 1b lacking the MeO group. On the contrary, the halogenated compounds H2C?CH(CH2)9N?P(4‐X‐C6H4)3 ( 1f,g ) (X = F, Cl) were hydrolyzed at a notably faster rate relative to the non‐halogenated congener 1e (X = H).  相似文献   

18.
The effect of the organotin compounds R nSnCl4?n (n = 1–3; where R = Me, Et, n‐Bu and Ph) upon oleic ((Z)‐9‐octadecenoic) acid oxidation by dioxygen has been studied at 25, 37, 65, and 95 °C. The promoting effect of organotins upon the formation of oleic acid hydroperoxides is temperature dependent and is at a maximum at a temperature close to the physiological one, but the impact of organotins upon oleic acid peroxidation decreases in the presence of 2,6‐di‐tert‐butylphenol. The role of organic free radicals derived from the Sn? C bond cleavage in the oxidation of oleic acid is discussed. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

19.
As a part of systematic investigation of synthesis and biologically active compounds of pyrazole derivatives containing transition metal, several new pyrazole copper(II) complexes 3a?f were synthesized from pyrazole sodium salts 2a?f , which were produced from spiro‐pyrazoles 1a?f and sodium hydride by a ring‐opening reaction. All the synthesized compounds were characterized by spectroscopic analysis. Pyrazole copper(II) complexes 3a?d and 3f exhibited high DNA cleavage activity in vitro. Furthermore, compounds 3a?f were tested for their growth inhibitory activity in A549 lung cancer, B16F10 murine melanoma, and HeLa human uterine carcinoma cells. Compounds 3c,d displayed moderate B16F10 and HeLa inhibitory activity levels ( 3c : IC50 = 45 μM in B16F10 cells and 34 μM in HeLa cells, 3d : IC50 = 50 μM in B16F10 cells and 32 μM in HeLa cells).  相似文献   

20.
The linear relationship between the coupling constants 1J(Sn? 13C) and 2J(Sn? H), observed for a number of organotin compounds, does not hold for coupling in the Sn? CHnCl3?n group of mono- and dichloromethyltin compounds. A complete determination of all NMR parameters of the compounds Me3Sn-CHnCl3?n (n = 0 to 3) shows no further anomalies, indicating that steric factors must be responsible for the unusually low values of 2J(Sn? H) in the SnCHnCl3?n group. Molecular weight measurements support this theory, showing that the chlorine-containing compounds are associated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号