首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The use of polycapillary (multichannel) columns with channels 3–10 μm in diameter in liquid chromatography was studied. It was shown that, in a number of cases, polycapillary columns can give analytical results more rapidly than conventional packed columns. The polycapillary columns studied in this work were not used in liquid chromatography before.  相似文献   

2.
The overall kinetic performance of three production columns (2.1 mm × 100 mm format) packed with 1.6 μm superficially porous CORTECS‐C18+ particles was assessed on a low‐dispersive I‐class ACQUITY instrument. The values of their minimum intrinsic reduced plate heights (hmin = 1.42, 1.57, and 1.75) were measured at room temperature (295 K) for a small molecule (naphthalene) with an acetonitrile/water eluent mixture (75:25, v/v). These narrow‐bore columns provide an average intrinsic efficiency of 395 000 plates per meter. The gradient separation of 14 small molecules shows that these columns have a peak capacity about 25% larger than similar ones packed with fully porous BEH‐C18 particles (1.7 μm) or shorter (50 mm) columns packed with smaller core–shell particles (1.3 μm) operated under very high pressure (>1000 bar) for steep gradient elution (analysis time 80 s). In contrast, because their permeabilities are lower than those of columns packed with larger core–shell particles, their peak capacities are 25% smaller than those of narrow‐bore columns packed with standard 2.7 μm core–shell particles.  相似文献   

3.
Sol‐gel bonded packing materials in continuous‐bed columns have been prepared for capillary electrochromatography (CEC). Three packing materials were investigated: small‐pore Spherisorb ODS1 (3 μm, 80 Å) with octadecyl as stationary phase, small‐pore mixed‐mode Spherisorb ODS/SCX (3 μm, 80 Å) with octadecyl and propyl sulfonic acid as stationary phases, and large‐pore Nucleosil ODS (7 μm, 1 400 Å) with octadecyl as stationary phase. The characteristics of these columns were compared in terms of electroosmotic flow, efficiency, inertness, and retention factors. In contrast to columns containing sol‐gel bonded ODS, columns containing sol‐gel bonded mixed‐mode ODS/SCX generated nearly pH independent electroosmotic flow (EOF) over pH 2–9. Columns containing sol‐gel bonded large‐pore ODS produced nearly three times lower reduced plate height than those containing small‐pore ODS. Efficiencies of 220,000 plates per meter and 175,000 plates per meter were obtained from columns containing sol‐gel bonded 7 μm, 1 400 Å ODS and columns containing sol‐gel bonded 3 μm, 80 Å ODS, respectively, which are among the highest reported efficiencies for continuous‐bed columns. In CEC, over one million plates per meter and pH independent EOF are expected from continuous‐bed columns containing sol‐gel bonded 1.5 μm particles with large pores and mixed‐mode stationary phases.  相似文献   

4.
In the last decade, core–shell particles have gained more and more attention in fast liquid chromatography separations due to their comparable performance with fully porous sub‐2 μm particles and their significantly lower back pressure. Core–shell particles are made of a solid core surrounded by a shell of classic fully porous material. To embrace the developed core–shell column market and use these columns in pharmaceutical analytical applications, 17 core–shell C18 columns purchased from various vendors with various dimensions (50 mm × 2.1 mm to 100 mm × 3 mm) and particle sizes (1.6–2.7 μm) were characterized using Tanaka test protocols. Furthermore, four selected active pharmaceutical ingredients were chosen as test probes to investigate the batch to batch reproducibility for core–shell columns of particle size 2.6–2.7 μm, with dimension of 100 × 3 mm and columns of particle size 1.6 μm, with dimension 100 × 2.1 mm under isocratic elution. Columns of particle size 2.6–2.7 μm were also tested under gradient elution conditions. To confirm the claimed comparable efficiency of 2.6 μm core–shell particles as sub‐2 μm fully porous particles, column performances of the selected core–shell columns were compared with BEH C18, 1.7 μm, a fully porous column material as well.  相似文献   

5.
Rapid and efficient enantioseparation of halogen aryl alcohols and β‐blockers propranolol and pindolol in packed bed CEC (p‐CEC) using as‐prepared submicron porous silica chiral stationary phases (CSPs) has been achieved. Monodispersed 0.66 and 0.81 μm chiral submicron porous silica spheres were prepared using tetramethoxysilane and hexadecyltrimethylammonium bromide, followed by a hydrothermal treatment method with ammonia–ethanol to expand the pore of silica spheres without changing their spherical morphology. A proper specific surface of ca. 230 m2/g and pore sizes average of 6–8 nm were obtained by this method. The submicron porous silica spheres were modified with mono‐6‐phenylcarbamoylated β‐CD via thiol‐en radical addition. They were packed into 9 cm 50 μm id capillary columns with photopolymerized monolithic frits. These submicron CSPs showed greater column efficiency (about 476 000 plates/m for 4‐iodophenyl‐1‐ethanol) and higher resolution than the corresponding 3 μm CSP.  相似文献   

6.
Capillary action LC (caLC) is introduced as a technique using capillary action as the driving force to perform LC in capillary columns packed with HPLC type microparticulate materials. A dry packing method with centrifugal force was developed to prepare capillary columns in parallel (10 columns per 3 min) to support their disposable use in caLC. Using a digital microscope for real‐time imaging and recording separations of components in a dye mixture, caLC was found to have flow characteristics similar to TLC. Based on the investigation of microparticulate HPLC silica gels of different size (1.5–10 μm) and a typical TLC grade irregular medium, Merck 60G silica, the van Deemter curves suggested molecular diffusion as the major contribution to band broadening in caLC. With Waters Xbridge 2.6 μm silica, plate heights down to 8.8 μm were obtained, comparable to those achievable in HPLC. Assisted by an image‐processing method, the visual caLC separation was converted to a classical chromatogram for further data analysis and such a facility confirmed the observation of highly efficient bands.  相似文献   

7.
Two types of monolithic silica columns derivatized to form an ODS phase, one prepared in a fused silica capillary (SR‐FS) and the other prepared in a mold and clad with an engineering plastic (poly‐ether‐ether‐ketone) (SR‐PEEK), were evaluated. The column efficiency and pressure drop were compared with those of a column packed with 5‐μm ODS‐silica particles and of an ODS‐silica monolith prepared in a mold and wrapped with PTFE tubing (SR‐PTFE). SR‐FS gave a lower pressure drop than a column packed with 5‐μm particles by a factor of 20, and a plate height of 20 μm at a linear velocity below 1 mm/s. SR‐PEEK showed higher flow‐resistance than the other monolithic silica columns, but they still showed a minimum plate height of 8–10 μm and a lower pressure drop than popular commercial columns packed with 5‐μm particles. The evaluation of SR‐FS columns in a CEC mode showed much higher efficiency than in a pressure‐driven mode.  相似文献   

8.
The chromatographic performance of 50 μm internal diameter (i.d.) fused silica columns coated with up to 2 μm films of immobilized SE-54 (methyl phenyl (5%) silicone) is evaluated under gas chromatographic conditions. The influence of pressure drop on the plate height is discussed. In comparison to thick film 250–530 μm i.d. columns, much higher efficiencies and faster analyses are obtained. Practical examples, performed on a standard GC instrument, illustrate the features of thick film 50 μm i.d. columns.  相似文献   

9.
Chromatographic properties of a new type of monolithic silica rod columns were examined. Silica rod columns employed for the study were prepared from tetramethoxysilane, modified with octadecylsilyl moieties, and encased in a stainless-steel protective column with two polymer layers between the silica and the stainless-steel tubing. A 25 cm column provided up to 45,000 theoretical plates for aromatic hydrocarbons, or a minimum plate height of about 5.5 μm, at optimum linear velocity of ca. 2.3 mm/s and back pressure of 7.5 MPa in an acetonitrile-water (80/20, v/v) mobile phase at 40°C. The permeability of the column was similar to that of a column packed with 5 μm particles, with K(F) about 2.4×10(-14) m(2) (based on the superficial linear velocity of the mobile phase), while the plate height value equivalent to that of a column packed with 2.5 μm particles. Generation of 80,000-120,000 theoretical plates was feasible with back pressure below 30 MPa by employing two or three 25 cm columns connected in series. The use of the long columns enabled facile generation of large numbers of theoretical plates in comparison with conventional monolithic silica columns or particulate columns. Kinetic plot analysis indicates that the monolithic columns operated at 30 MPa can provide faster separations than a column packed with totally porous 3-μm particles operated at 40 MPa in a range where the number of theoretical plates (N) is greater than 50,000.  相似文献   

10.
A procedure for packing 15 cm × 1 mm id reverse-phase microbore columns with 3 μm silicas obtained from different manufacturers is described. The speed of analysis and detection limits are compared to those obtained with a 50 cm × 1 mm id column packed with 10 μm ODS. The effect of detector time constant on the system, and flow rates on column efficiency are also examined.  相似文献   

11.
Pooled serum and the serum of a healthy volunteer were spiked with aluminum and aluminum species were separated on Bio-gel columns. With the P10 column, less than 40% of the aluminum was eluted with the high-molecular-weight (m.w.>20 00) fraction; the total aluminum concentration was 600 μg l?1. Tw lower m.w. fractions were also recovered. With the P4 column, only one high m.w. (65–100%) and one low m.w. (0–53%) fraction were recovered; the total Al concentrations was 10–110 μg l?1. When a hemofiltrate obtained from uremic patients on regular hemofiltration and spiked with 60–110 μg Al l?1 was applied to the P4 gel, two lower m.w. fractions were detected. The adsorption/desorption of “free” aluminum on the column was studied with 0.9% NaCl solution, Earle's medium and filtrate. Normal column fractionation and frontal analysis (adsorption and desorption breakthrough curves) were used. Redistribution of aluminum seemed not to occur within the serum when in contact with the column, but contamination from extraneous aluminum could greatly alter the aluminum distribution. Different sources of errors were identified.8  相似文献   

12.
The aim of this study was to evaluate the possibilities/limitations of recent RP‐LC columns packed with 1.6 μm superficially porous particles (Waters Cortecs) and to compare its potential to other existing sub‐2 μm core–shell packings. The kinetic performance of Kinetex 1.3 μm, Kinetex 1.7 μm and Cortecs 1.6 μm stationary phases was assessed. It was found that the Kinetex 1.3 μm phase outperforms its counterparts for ultra‐fast separations. Conversely, the Cortecs 1.6 μm packing seemed to be the best stationary phase for assays with longer analysis time in isocratic and gradient modes, considering small molecules and peptides as test probes. This exceptional behaviour was attributed to its favourable permeability and somewhat higher mechanical stability (ΔPmax of 1200 bar). The loading capacity of these three columns was also investigated with basic and neutral drugs analysed under acidic conditions. It appears that the loading capacities of Cortecs 1.6 μm and Kinetex 1.7 μm were very close, while it was reduced by 2–7‐fold on the Kinetex 1.3 μm packing. However, this observation is dependent on the nature of the compound and certainly also on mobile phase conditions.  相似文献   

13.
This work reports a novel fabrication technique for development of channels on paper‐based microfluidic devices using the syringe module of a 3D printing syringe–based system. In this study, printing using polycaprolactone (PCL)‐based ink (Mw 70 000‐90 000) was employed for the generation of functional hydrophobic barriers on Whatman qualitative filter paper grade 1 (approximate thickness of 180 μm and pore diameter of 11 μm), which would effectively channelize fluid flow to multiple assay zones dedicated for different analyte detection on a microfluidic paper‐based analytical device (μPAD). The standardization studies reveal that a functional hydrophilic channel for sample conduction fabricated using the reported technique can be as narrow as 460.7 ± 20 μm and a functional hydrophobic barrier can be of any width with a lower limit of about 982.2 ± 142.75 μm when a minimum number of two layers of the ink is extruded onto paper. A comparison with the hydrodynamic model established for writing with ink is used to explain the width of the line printed by this system. A fluid flow analysis through a single channel system was also carried out to establish its conformity with the Washburn model, which governs the fluid flow in two‐dimensional μPAD. The presented fabrication technique proves to be a robust strategy that effectively taps the advantages of this 3D printing technique in the production of μPADs with enhanced speed and reproducibility.  相似文献   

14.
Different columns with microparticulate (1.5 and 2 μm) stationary phases were investigated for the analysis of the polymorphism of mammalian metallothionein (MT) by reversed-phase HPLC. When a non-porous 1.5 μm stationary phase was used, the duration of the chromatographic run was reduced 10-fold (in comparison with the conventional 5 μm packing) without any loss in resolution. The method was applied to the analysis of MT-1 and MT-2 preparations from rabbit liver.  相似文献   

15.
150×3 mm I.D. columns, packed with 1-μm non-porous spherical silica particles, were used to separate soluble synthetic polymers by hydrodynamic chromatography. The columns exhibited a plate height of about 1.4 μm allowing very fast and efficient separations of polymers in the molecular mass range 103−2·106 g/mol. The migration behaviour of polymers could be well described by a simple theoretical model. The applicability of packed bed HDC for the fast separation of polymers was illustrated with separations of polystyrene and poly(methyl methacrylate) mixtures.  相似文献   

16.
The analysis of sulfur-containing compounds using fused silica capillary columns and the Sulfur Chemiluminescence Detector has been investigated. This combination of an inert chromatographic system and a high sensitivity, selective detector provides significant advantages for the analysis of low levels of sulfur compounds in complex matrices over existing techniques. Capillary columns coated with thick films (1–4 μm) of methyl silicone stationary phase permit separation of most sulfur containing compounds and, when used with sub-ambient column temperatures, these columns can be used for the separation of sulfur gases. The effects of stationary film thickness, column length, and internal diameter for the measurement of sulfur compounds in hydrocarbon matrices has been determined.  相似文献   

17.
Capillary columns of 0.3–0.35 mm internal diameter and 0.3–7.7 m length, packed with 3 to 30 μm octadecylsilica stationary phases as used for liquid chromatography, were applied to gas chromatographic separation of low boiling hydrocarbons. Van Deemter plots for these columns showed the optimum column efficiency to occur at linear velocities of 4–5 cm/s. A short column was applied to the rapid separation of components of a natural gas and impurities in standard gases, while a long column was applied to the separation of complex mixtures.  相似文献   

18.
The simultaneous analysis of α-HCH, β-HCH, γ-HCH, HCB, p,p′-DDD, p,p′-DDT, p,p′-DDE, o,p′-DDT, mirex, dieldrin and 62 chlorobiphenyl congeners on two parallel capillary GC columns of different polarity is described for nine Mediterranean fish species. Ten commercially available columns with stationary phases completely characterized in respect of their PCB elution patterns were considered for dual-column GC-ECD analysis. The combination of a 60 m × 0.25 mm i.d. column coated with a 0.25 μm film of 50% diphenyl dimethylsiloxane and a series combination of a 25 m × 0.25 mm i.d. column coated with a 0.25 μm film of 5% diphenyl dimethylsiloxane with a 25 m × 0.22 mm i.d. column coated with a 0.10 μm film of 1, 10-dicarba-closo-dodecarborane dimethylpolysiloxane furnished the highest number of separated chlorobiphenyl congeners (104). The dual-column GC system performed with high stability and reproducibility over a broad concentration range (1–3000 ng/g lipid) of the organochlorine compounds in the investigated fish.  相似文献   

19.
Ultra high-performance liquid chromatographic (UHPLC) systems on columns packed with materials ranging from 1.9 to 2.7 μm average particle size were assessed for the fast and sensitive analysis of porphyrins in clinical materials. The fastest separation was achieved on an Agilent Poroshell C(18) column (2.7 μm particle size, 50 × 4.6 mm i.d.), followed by a Thermo Hypersil Gold C(18) column (1.9 μm particle size, 50 × 2.1 mm i.d.) and the Thermo Hypersil BDS C(18) column (2.4 μm particle size, 100 × 2.1 mm i.d.). All columns required a mobile phase containing 1 m ammonium acetate buffer, pH 5.16, with a mixture of acetonitrile and methanol as the organic modifiers for optimum resolution of the type I and III isomers, particularly for uroporphyrin I and III isomers. All UHPLC columns were suitable and superior to conventional HPLC columns packed with 5 μm average particle size materials for clinical sample analysis.  相似文献   

20.
A loading and productivity study was done using three racemates on vancomycin and teicoplanin-bonded chiral stationary phases of different particle formats. Two columns were packed with 2.7 μm superficially porous particles and two columns were packed with identically bonded 5 μm fully porous particles. The last two columns were packed with specially synthesized 4.5 μm vancomycin and teicoplanin superficially porous particles. The loading of different chiral compounds showed that the columns filled with 2.7-μm chiral stationary phases were inappropriate for preparative separations due to their very low permeability which precluded high flow rates. However, columns containing 4.5 μm superficially porous (core-shell) particles were as effective for small-scale preparative chiral separations as columns filled with classical 5 μm fully porous particles. Comparing the 4.5 μm superficially porous particles and 5 μm fully porous particles teicoplanin columns, the observed respective productivities of 270 and 265 mg/g chiral phase/h for 5-methyl-5-phenyl hydantoin enantiomers were obtained. Particular attention was given to the peculiar case of the mianserin enantiomeric separation on vancomycin columns that gave observed productivities of 200 and 205 mg/g chiral phase/h on the 4.5 μm superficially porous particles and 5 μm fully porous particles, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号