首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Analytical letters》2012,45(12):1954-1964
A novel, simple, sensitive, and efficient method for the speciation of inorganic antimony by dispersive liquid–liquid microextraction (DLLME) combined with graphite furnace atomic absorption spectrometry (GF-AAS) is reported. The method uses a hydrophobic complex of antimony(III) with a new chelating agent, 1,2,6-hexanetriol trithioglycolate, at neutral pH. The complex was extracted into the organic phase, whereas antimony(V) remained in aqueous solution. The concentration of antimony(V) was obtained by subtracting the antimony(III) concentration from the total antimony concentration following the reduction of antimony(V) to antimony(III) by L-cysteine. The pH, extraction and dispersive solvents and volumes, and concentration of 1,2,6 -hexanetriol trithioglycolate were optimized. Under the optimized conditions, the analytical curve was linear from 0.26 to 3.2 micrograms per liter with a limit of detection of 27.0 nanograms per liter for antimony(III). The relative standard deviation was 6.8 percent at 0.52 microgram per liter antimony(III) with an enrichment factor of twenty-six. The method was employed for the speciation of antimony in leaching solution in contact with plastic; and the recoveries in fortified samples were between 94.2 and 118.0 percent.  相似文献   

2.
A coulometric analysis method and an ion-exclusion chromatographic method were developed for the determination of antimony(V) in a large excess of antimony(III). Antimony(V) reacted with potassium iodide in a high concentration hydrochloric acid; the liberated iodine was determined by the standard-addition method using coulometrically generated iodine. Using a Dionex ICE-AS1 ion-exclusion column, antimony(V) was eluted with 40 mmol/L sulfuric acid; on the other hand, antimony(III) was strongly retained on the column. The content, expressed as the amount ratio of antimony(V) to antimony(III), was 0.035% in a 10 g/kg antimony(III) solution prepared from an antimony(III) oxide reagent by the coulometric analysis method and 0.036% in a 1 g/kg antimony(III) solution prepared from the same antimony(III) oxide by the ion-exclusion chromatographic method. The results of both methods were in good agreement with each other. The detection limit of antimony(V) in antimony(III) oxide by the former method was 0.004% of antimony(III), and that by the latter method was 0.002% of antimony(III).  相似文献   

3.
The antimonial drug (antimony potassium tartrate, antimony piperazine tartrate or antimony lithium thiomaleate) in aqueous solution or biological fluid is treated with sodium diethyldithiocarbamate in the presence of a suitable masking reagent, the pH is adjusted to 9 +/- 0.5. and the antimony complex extracted with n-hexane and determined by reversed-phase HPLC with an ODS column and detection at 254 nm. The limits of detection are 20 ng (for antimony potassium tartrate and antimony lithium thiomaleate) and 16 ng (for antimony piperazine tartrate).  相似文献   

4.
Sato S 《Talanta》1985,32(5):341-344
Highly sensitive and reproducible extraction-spectrophotometric methods for differential determination of antimony(III) and antimony(V) were investigated. It was found that antimony(III) reacts easily with mandelic acid to form a complex anion extractable into chlorobenzene with Malachite Green from weakly acidic media (pH 2.2-3.5) at room temperature, whereas antimony(V) reacts only slowly, and heating for 15 min at 45 degrees is needed to obtain maximum sensitivity. The significant difference between the rates of reaction of mandelic acid with antimony(III) and antimony(V) was applied to the differential determination of these two species. The calibration graph was linear over the range 0.15-6.0 mug for antimony(III), and 0.20-10 mug for antimony(V).  相似文献   

5.
Kamada T  Yamamoto Y 《Talanta》1977,24(5):330-333
The extraction behaviour of antimony(III) and antimony(V) with ammonium pyrrolidinedithiocarbamate, sodium diethyldithiocarbamate and dithizone in organic solvents has been investigated by means of frameless atomic-absorption spectrophotometry with a carbon-tube atomizer. The selective extraction of antimony(III) and differential determination of antimony(III) and antimony(V) have been developed. With ammonium pyrrolidinedithiocarbamate and methyl isobutyl ketone, when the aqueous phase/solvent volume ratio is 50 ml/10 ml and the injection volume in the carbon tube is 20 mul, the sensitivity for antimony is 0.2 ng/ml for 1% absorption. The relative standard deviations are ca. 2%. Interferences by many metal ions can be prevented by masking with EDTA. The proposed methods have been applied satisfactorily to determination of antimony(III) and antimony(V) in various types of water.  相似文献   

6.
Antimony(III) was preconcentrated on activated carbon (AC) as the antimony(III)–pyrogallol complex. Prior to the preconcentration, antimony(V) was reduced to antimony(III) with potassium iodide and ascorbic acid. The antimony adsorbed on the AC was determined by graphite furnace atomic absorption spectrometry as an AC suspension. The method was applied to differential determination of trace amounts of antimony in natural water.  相似文献   

7.
Han-Wen S  Xiao-Quan S  Zhe-Ming N 《Talanta》1982,29(7):589-593
If copper is used as a matrix modifier for the determination of antimony, the ashing temperature for antimony in aqueous solution and a BPHA-CHCl(3) extract can be raised to 1300 degrees and 1100 degrees , respectively. A selective procedure for separating antimony(III) from antimony(V) by extraction with BPHA in chloroform is described, along with the conditions for preserving trace antimony in water samples. The recommended method has been applied satisfactorily to the determination of antimony(III) and antimony(V) in various types of water at sub-ng/ml levels.  相似文献   

8.
Yu C  Cai Q  Guo ZX  Yang Z  Khoo SB 《The Analyst》2002,127(10):1380-1385
A novel and simple method for inorganic antimony speciation is described based on selective solid phase extraction (SPE) separation of antimony(III) and highly sensitive inductively coupled plasma mass spectrometric (ICP-MS) detection of total antimony and antimony(V) in the aqueous phase of the sample. Non-polar SPE cartridges, such as the Isolute silica-based octyl (C8) sorbent-containing cartridge, selectively retained the Sb(III) complex with ammonium pyrrolidine dithiocarbamate (APDC), while the uncomplexed Sb(V) remained as a free species in the solution and passed through the cartridge. The Sb(III) concentration was calculated as the difference between total antimony and Sb(V) concentrations. The detection limit was 1 ng L(-1) antimony. Factors affecting the separation and detection of antimony species were investigated. Acidification of samples led to partial or complete retention of Sb(V) on C8 cartridge. Foreign ions tending to complex with Sb(III) or APDC did not interfere with the retention behavior of the Sb(III)-APDC complex. This method has been successfully applied to antimony speciation of various types of water samples.  相似文献   

9.
An analytical method for the separation and quantification of Sb(III) and Sb(V) using anion chromatography with ICP-MS is presented. The optimum conditions for the separation of the antimony species were established with 15 mmol/L nitric acid at pH 6 as eluent system on a PRP-X100 column. The retention times for antimony(V) and antimony(III) were 85 s and 300 s with detection limits of 0.06 microg/L and 0.29 microg/L, respectively. The proposed method was applied to cell extracts of Leishmania donovani, which were incubated with antimony(III) and antimony(V). Some metabolism seemed to occur within the cells.  相似文献   

10.
The bioaccumulation and excretion of antimony by the freshwater alga Chlorella vulgaris , which had been isolated from an arsenic-polluted environment, are described. When this alga was cultured in a medium containing 50 μg cm−3 of antimony(III) for 14 days, it was found that Chlorella vulgaris bioaccumulated antimony at concentrations up to 12 000 μg Sb g−1 dry wt after six days' incubation. The antimony concentration in Chlorella vulgaris decreased from 2570 to 1610 μg Sb g−1 dry wt after the cells were transferred to an antimony-free medium. We found that the excreted antimony consists of 40% antimony(V) and 60% antimony(III). This means that the highly toxic antimony(III) was converted to the less toxic antimony (V) by the living organism. Antimony accumulated in living Chlorella vulgaris cells was solvent-fractionated with chloroform/methanol (2:1), and the extract residue was fractionated with 1% sodium dodecyl sulfate (SDS). Gel-filtration chromatography of the solubilized part showed that antimony was combined with proteins whose molecular weight was around 4×104 in the antimony-accumulated living cells. © 1997 by John Wiley & Sons, Ltd.  相似文献   

11.
An analytical method for the separation and quantification of Sb(III) and Sb(V) using anion chromatography with ICP-MS is presented. The optimum conditions for the separation of the antimony species were established with 15 mmol/L nitric acid at pH 6 as eluent system on a PRP-X100 column. The retention times for antimony(V) and antimony(III) were 85 s and 300 s with detection limits of 0.06 μg/L and 0.29 μg/L, respectively. The proposed method was applied to cell extracts of Leishmania donovani, which were incubated with antimony(III) and antimony(V). Some metabolism seemed to occur within the cells.  相似文献   

12.
The interferences between arsenic and antimony on each other during the hydride generation atomic absorption spectrometry (HGAAS) determination of arsenic and antimony using a quartz tube atomizer (QTA) were examined. In order to eliminate or reduce such interferences by selective heat decomposition of arsine and stibine, a Pyrex adsorption U-tube trap containing glass wool was placed between the drying tube and the quartz tube atomizer. Although at 250 °C stibine decomposes and is held almost completely by the trap, arsine is also decomposed to an extent of 24% and, therefore, thermal decomposition is not useful to eliminate antimony interference on arsenic determination. The effect of coating the glass wool in the U-tube with antimony on the arsenic suppression of the antimony signal was studied. The results showed that the antimony coating in the U-tube could not hold arsenic effectively and its interference on the antimony signal could not be eliminated by this means. In the second part of the study, oxygen was supplied to the quartz tube atomizer during atomization in order to study the effect of supplying oxygen on the antimony signal and on the interference of arsenic in the antimony determination. Sensitivity was increased in the presence of oxygen and interferences of arsenic on antimony determination was decreased by about 10% when oxygen was supplied. It was also observed that the extent of interferences depended mainly on the interferent concentration rather than the analyte concentration.  相似文献   

13.
Murti SS  Rajan SC  Subrahmanyam J 《Talanta》1988,35(6):443-446
An extractive atomic-absorption spectrophotometric (AAS) procedure is developed for fast and accurate determination of up to 20 mug/g antimony in lead and zinc concentrates and other smelter products. The procedure involves digestion of the sample with potassium bisulphate and sulphuric acid, addition of hydrazine to reduce all antimony to Sb(III), reoxidation to Sb(V), extraction of the chloro-complex of antimony(V) with n-butyl acetate, and AAS analysis of the organic phase for antimony.  相似文献   

14.
Speciation analysis of antimony in marine biota is not well documented, and no specific extraction procedure of antimony species from algae and mollusk samples can be found in the literature. This work presents a suitable methodology for the speciation of antimony in marine biota (algae and mollusk samples). The extraction efficiency of total antimony and the stability of Sb(III), Sb(V) and trimethylantimony(V) in different extraction media (water at 25 and 90 °C, methanol, EDTA and citric acid) were evaluated by analyzing the algae Macrosystis integrifolia (0.55 ± 0.04 μg Sb g−1) and the mollusk Mytilus edulis (0.23 ± 0.01 μg Sb g−1). The speciation analysis was performed by anion exchange liquid chromatography (post-column photo-oxidation) and hydride generation atomic fluorescence spectrometry as detection system (HPLC-(UV)-HG-AFS). Results demonstrated that, based on the extraction yield and the stability, EDTA proved to be the best extracting solution for the speciation analysis of antimony in these matrices. The selected procedure was applied to antimony speciation in different algae samples collected from the Chilean coast. Only the inorganic Sb(V) and Sb(III) species were detected in the extracts. In all analyzed algae the sum of total antimony extracted (determined in the extracts after digestion) and the antimony present in the residue was in good agreement with the total antimony concentration determined by HG-AFS. However, in some extracts the sum of antimony species detected was lower than the total extracted, revealing the presence of unknown antimony species, possibly retained on the column or not detected by HPLC-(UV)-HG-AFS. Further work must be carried out to elucidate the identity of these unknown species of antimony.  相似文献   

15.
A sensitive and simple method for flame atomic absorption spectrometry (FAAS) determination of antimony species after separation/preconcentration by cloud point extraction (CPE) has been developed. When the system temperature is higher than the cloud point extraction temperature, the complex of antimony (III) with N-benzoyl-N-phenyhydroxylamine (BPHA) can enter the surfactant-rich phase, whereas the antimony (V) remains in the aqueous phase. Antimony (III) in surfactant-rich phase was analyzed by FAAS and antimony (V) was calculated by subtracting of antimony (III) from the total antimony after reducing antimony (V) to antimony (III) by L-cysteine. The main factors affecting the cloud point extraction, such as pH, concentration of BPHA and Triton X-114, equilibration temperature and time, were investigated systematically. Under optimized conditions, the detection limits (3σ) were 1.82 ng mL−1 for Sb(III) and 2.08 ng mL−1 for Sb(total), and the relative standard deviations (RSDs) were 2.6% for Sb(III) and 2.2% for Sb(total). The proposed method was applied to the speciation of antimony species in artificial seawater and wastewater, and recoveries in the range of 95.3–106% were obtained by spiking real samples. This technique was validated by means of reference water materials and gave good agreement with certified values.  相似文献   

16.
《Analytical letters》2012,45(12):1941-1953
The methodology for antimony speciation was optimized for liquid chromatography coupled to hydride generation – atomic fluorescence spectrometry. An anion exchange column was employed with isocratic elution. Ammonium tartrate was shown to be the optimum mobile phase and extracting solution for this analysis. The highest efficiency and resolution for the antimony species was achieved using 5 percent methanol in 300 millimoles per liter ammonium tartrate acidified with hydrochloric acid to pH 4.5. The retention times of antimony(V), trimethylantimony, and antimony(III) were 2.6, 3.9, and 5.2 minutes, respectively. The calibration curves were linear with limits of detection of 0.1, 0.2, and 0.43 microgram per liter for antimony(III), antimony(V), and trimethylantimony, respectively. The precision, evaluated by the relative standard deviation, ranged from 1.2 to 5.3 percent. The average recovery from these environmental samples by a single-step procedure was approximately 26 percent. The results also revealed that the correlation between the sum of each species by the single-step procedure and total digestion was significant for the investigated soils and sediments.  相似文献   

17.
This work presents a disposable bismuth‐antimony film electrode fabricated on screen‐printed electrode (SPE) substrates for lead(II) determination. This bismuth‐antimony film screen‐printed electrode (Bi‐SbSPE) is simply prepared by simultaneously in situ depositing bismuth(III) and antimony(III) with analytes on the homemade SPE. The Bi‐SbSPE can provide an enhanced electrochemical stripping signal for lead(II) compared to bismuth film screen‐printed electrodes (BiSPE), antimony film screen‐printed electrodes (SbSPE) and bismuth‐antimony film glassy carbon electrodes (Bi‐SbGC). Under optimized conditions, the Bi‐SbSPE exhibits attractive linear responses towards lead(II) with a detection limit of 0.07 µg/L. The Bi‐SbSPE has been demonstrated successfully to detect lead in river water sample.  相似文献   

18.
New procedures of potentiometric stripping analysis can be based on the use of antimony film electrodes and antimony(III) salts. In this paper, antimony films are generated onto carbon paste electrodes in situ and after electrolytic preconcentration of the metals to be determined, the excess antimony(III) serves as a chemical oxidant. Moreover in acidic solutions containing halide ions, the oxidation ability of antimony(III) is adequately limited because of formation of its corresponding halide complexes. Compared with similar total substitution of traditionally used mercury(II) by bismuth(III), the use of antimony(III) offers higher sensitivity in detection of heavy metals, namely, cadmium and lead.  相似文献   

19.
We report here a facile electrochemical method on the preparation of antimony nanoparticles (NPs) by dispersing a bulk antimony electrode under highly cathodic polarization in different media at room temperature, requiring neither precursor ions nor organic capping agents. The dispersion of bulk antimony in a tetrabutyl ammonium bromide (TBAB) acetonitrile solution involved the formation and oxidation of an unstable Zintl compound of antimony, and the as-prepared Sb NPs were readily transferred into Sb–Sb2O3 core–shell NPs during the post treatment and characterization because of the surface oxidation of Sb NPs by oxygen in the air. In contrast, Sb NPs prepared by dispersing the bulk antimony cathode in a blank aqueous NaOH solution were oxygen-resistant in the air because the strongly adsorbed hydroxide ions from the solution could stabilize the Sb NPs. The incorporation of sodium, the formation/oxidation of polyanions of antimony (Zintl ions), and the formation/decomposition of unstable antimony hydrides may all take effect for the cathodic dispersion of bulk antimony electrodes in the NaOH solution. Transmission electron microscope, X-ray diffraction, X-ray photoelectron spectroscopy and Raman spectroscopy were used to characterize these NPs.  相似文献   

20.
Radiometric titration of antimony(III) with potassium bromate in hydrochloric acid media using the standard series method provided much valuable informations on the titration errors which depended on the concentrations of the acid and antimony(III). The hydrochloric acid concentrations between 2.5 and 3.0M were found to be optimum for the oxidation of antimony(III) amounts of 4 μg or less. Under these optimum reaction conditions the redox substoichiometric isotope dilution analysis was applied to the determination of antimony in metallic zinc and the satisfactory results were obtained, without the separation of matrix element. Also, the merits of various oxidizing agents hitherto studied for the quantitative oxidation of antimony(III) were compared and discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号