首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The structure of N,N′,N′′‐tribenzylphosphorothioic triamide, C21H24N3PS, (I), and analysis of the bond‐angle sums at the N atoms for this compound, and for 74 structures with a P(S)[N]3 skeleton and the N atom in a three‐coordinate geometry found in the Cambridge Structural Database [CSD; Groom & Allen (2014). Angew. Chem. Int. Ed. 53 , 662–671], are reported. For (I), the bond‐angle sum at one of the N atoms [359 (1)°] shows a nearly planar configuration, while the other two show a nonplanar geometry with bond‐angle sums of 342 (1) and 347 (1)°. The location of the atoms attached to the nonplanar N atoms suggests an anti orientation of the corresponding lone electron pairs (LEPs) on these N atoms with respect to the P=S group. For 74 structures with a P(S)[N]3 skeleton and with the N atom in a three‐coordinate geometry, the bond‐angle sums at the N atoms were found to be in the range 293–360°. Among 307 such three‐coordinate N atoms, 39% (120 N atoms) have bond‐angle sums in the range 359–360°, in accordance with sp2 hybridization, and 45% (138 N atoms) have bond‐angle sums in the range 352–359°, with hybridization close to sp2. For the orientation of the LEP with respect to the P=S group, the anti orientation was found to be a general rule for N atoms, with the corresponding bond‐angle sums deviating by more than 8° from the planar value of 360°. In the title structure, the S atom takes part in intermolecular (N—H...)(N—H...)S hydrogen bonds, connecting the molecules into extended chains parallel to the b axis. The co‐operation of one N atom in an N—H...S hydrogen bond as an H‐atom donor, and in an N—H...N hydrogen bond as an acceptor, is a novel feature of the crystal structure.  相似文献   

2.
The two isomers of 3-methyl pentene-2 have been investigated in the vapour phase by electron diffraction. The higher boiling isomer (70.4 °C) has the E-configuration and the isomer boiling at 67.7 °C has the Z-configuration. Bond distances in the E-isomer are: r(CC) = 1.349, r(Csp2-Csp3) = 1.511, r(C-C) = 1.551, r(C-H) = 1.116 Å; in the Z-isomer: r(CC) = 1.344, r(Csp2-Csp3) = 1.508, r(C-C) = 1.553, r(C-H) = 1.114 Å. In both compounds the Csp3-Csp3 bond is at approximately right angles to the plane containing the double bond. The possibility of non-planar arrangements around the double bond is discussed.  相似文献   

3.
The title compound, C34H40N2O2S2, adopts a trans conformation. The four conjugated Csp2—Csp2 single and double bonds of the polymethinic moiety, which bridges both heterocyclic end groups and the central four-membered ring, display nearly equal bond lengths. The mol­ecule is nearly planar, with interplanar angles between the benzo­thia­zole end groups and the central four-membered ring of 6.9 (1) and 7.7 (1)°; the angle between the heterocyclic systems is 1.8 (1)°. The crystal packing involves π-stacking effects, with intermolecular C⃛C distances varying from 3.755 (3) to 3.991 (3) Å.  相似文献   

4.
The crystal structure of (1,1′-ferrocenediyl)diphenylsilane has been determined from analysis of photographic X-ray data. The crystal system is orthorhombic, a = 14.18(2), b = 12.54(2), c = 9.28(1) Å, space group Pnma with four formula units. The molecule has crystallographic m (Cs) symmetry with atoms Fe and Si lying in the mirror plane, which bisects the two phenyl groups. The planar cyclopentadienyl rings are bridged by a single silicon atom, and are tilted 19.2° with respect to one another. The Fe—C(Cp) distances vary from 2.01(1) to 2.11(1) Å. The bridging angle C(1)—Si—C(1′) is 99.1°, while the Si—C(sp2) bond lengths range from 1.86 to 1.88 Å. The exocyclic C(1)—Si bond makes an angle of 40° with respect to the plane of the cyclopentadienyl ring.  相似文献   

5.
The title compound, C10H13BrN6O3, exhibits an anti gly­cosylic bond conformation, with an O—C—N—C torsion angle of −105.0 (6)°. The pseudorotation phase angle and the amplitude [P = 5.8 (5)° and τm = 30.0 (3)°, respectively] indicate N‐type sugar puckering (3T2).  相似文献   

6.
In the title compound [systematic name: 7‐(2‐de­oxy‐β‐d ‐erythro‐pentofuranos­yl)‐2‐fluoro‐7H‐pyrrolo[2,3‐d]pyrimidin‐2‐amine], C11H13FN4O3, the conformation of the N‐glycosylic bond is between anti and high‐anti [χ = −110.2 (3)°]. The 2′‐deoxy­ribofuranosyl unit adopts the N‐type sugar pucker (4T3), with P = 40.3° and τm = 39.2°. The orientation of the exocyclic C4′—C5′ bond is −ap (trans), with a torsion angle γ = −168.39 (18)°. The nucleobases are arranged head‐to‐head. The crystal structure is stabilized by four inter­molecular hydrogen bonds of types N—H⋯N, N—H⋯O and O—H⋯O.  相似文献   

7.
The title compound {systematic name: 2,2′‐[1,3‐propanediyldioxydi‐o‐phenylenebis(nitrilomethylidyne)]diphenol}, C29H26N2O4, exists as the phenol–imine form in the crystal, and there are strong intramolecular O—H⋯N hydrogen bonds, with O⋯N distances of 2.545 (2) and 2.579 (2) Å. The C=N imine bond distances are in the range 1.276 (2)–1.279 (2) Å and the C=N—C bond angles are in the range 123.05 (16)–124.64 (17)°. The configurations about the C=N bonds are anti (1E).  相似文献   

8.

The X-ray crystallographic analysis of 6,6-dimethyl-2,4,8,10-tetra-tert-octyl-dibenzo[d,f][1,3,2]dioxagermepin, 1 is reported. In the solid-state conformation of 1, the dihedral angle about the C─C sp2-sp 2 σ bond connecting the two aryl rings is 50.1°. The observed C2 symmetry in the solid-state conformation of 1 is consistent with the previously suggested solution conformation.  相似文献   

9.
Alkylaryl‐ and alkylheteroarylketones, including those with condensed aromatic moieties, are readily vinylated with arylacetylenes (KOH/DMSO, 100 °C, 1 h) to give regio‐ and stereoselectively the (E)β‐γ‐ethylenic ketones ((E)‐3‐buten‐1‐ones) in 61–84 % yields and with approximately 100 % stereoselectivity. This vinylation represents a new C(sp3)? C(sp2) bond‐forming reaction of high synthetic potential.  相似文献   

10.
The title compound, C26H21NO2S2, which consists of a benzo­thia­zole skeleton with α‐naphthyl­vinyl and tosyl groups at positions 2 and 3, respectively, was prepared by palladium–copper‐catalyzed heteroannulation. The E configuration of the mol­ecule about the vinyl C=C bond is established by the benzothiazole–naphthyl C—C—C—C torsion angle of 177.5 (4)°. The five‐membered heterocyclic ring adopts an envelope conformation with the Csp3 atom 0.380 (6) Å from the C2NS plane. The two S—C [1.751 (4) and 1.838 (4) Å] and two N—C [1.426 (5) and 1.482 (5) Å] bond lengths in the thia­zole ring differ significantly.  相似文献   

11.
The structure of 2,5‐bis­(methyl­thio)‐1,4‐benzo­quinone, C8H8O2S2, is composed of an essentially planar centrosymmetric benzo­quinone substituted with two methyl­thio groups. The important bond distances are S—Csp3 1.788 (2) and S—Csp2 1.724 (2) Å, and the two Csp2—Csp2 distances are 1.447 (3) and 1.504 (3) Å, which differ significantly. There are short S?S interactions of 3.430 (1) Å and Csp2—H?O‐type contacts forming a dimeric motif with graph set R22(8). The structure of 2‐methyl‐3‐(methyl­sulfonyl)­benzo­[b]­thio­phene, C10H10O2S2, is composed of an essentially planar benzo­thio­phene moiety substituted with methyl and methyl­sulfonyl groups. The mean values of the important bond distances are endocyclic S—Csp2 1.734 (3), S=O 1.434 (4) and C—Caromatic 1.389 (10) Å. The exocyclic S—Csp2 and S—Csp3 distances are 1.759 (4) and 1.763 (5) Å, respectively.  相似文献   

12.
Despite several methodologies established for C(sp2)−I selective C(sp2)−C(sp3) bond formations, achieving arene-flanked quaternary carbons by cross-coupling of tertiary alkyl precursors with bromo(iodo)arenes in a C(sp2)−I selective manner is rare. Here we report a general Ni-catalyzed C(sp2)−I selective cross-electrophile coupling (XEC) reaction, in which, beyond 3° alkyl bromides (for constructing arene-flanked quaternary carbons), 2° and 1° alkyl bromides are also demonstrated to be viable coupling partners. Moreover, this mild XEC displays excellent C(sp2)−I selectivity and functional group compatibility. The practicality of this XEC is demonstrated in simplifying the routes to several medicinally relevant and synthetically challenging compounds. Extensive experiments show that the terpyridine-ligated NiI halide can exclusively activate alkyl bromides, forming a NiI−alkyl complex through a Zn reduction. Attendant density functional theory (DFT) calculations reveal two different pathways for the oxidative addition of the NiI−alkyl complex to the C(sp2)−I bond of bromo(iodo)arenes, explaining both the high C(sp2)−I selectivity and generality of our XEC.  相似文献   

13.
The molecular structure and conformation of 2,3-dichloro-1-propene have been determined by gas-phase electron diffraction at nozzle temperatures of 24, 90 and 273°C. The molecules exist as a mixture of two conformers with the chlorine atoms anti (torsion angle ∠φ = 0°) or gauche (∠φ = 109°) to each other and with the anti form the more stable. The composition (mole fraction) of the vapor with uncertainties estimated at 2σ was found to be 0.55 (0.08), 0.49 (0.08) and 0.41 (0.10) at 24, 90 and 273°, respectively. These values correspond to an energy difference with estimated standard deviation ΔE° = E°g-E°a = 0.7 ± 0.3 kcal mol?1 and an entropy difference ΔS° = S°g-S°a = 0.6 ± 0.9 cal mol?1 K?1. Some of the diffraction results, together with spectroscopic observations, permit the evaluation of an approximate torsional potential function of the form 2V = V1 (1 - cos φ) + V2 (1 - cos 2φ) + V3 (1 - cos 3φ); the results are V1 = 4.4 ± 0.5, V2 = ?2.9 ± 0.5 and V3 = 4.8 ± 0.2, all in kcal mol?1. The results at 24°C for the distance (ra) and angle (∠α) parameters, with estimated uncertainties of 2σ, are: r(Csp2-H) = 1.098(0.020)Å, r(Csp3-H) = 1.103(0.020)Å, r(CC) = 1.334(0.009)Å, r(C-C) = 1.504(0.013)Å, r(Csp2-Cl) = 1.752(0.021)Å, r(Csp3-Cl) = 1.776(0.020)Å, ∠C-CC = 127.6(1.1)°, ∠Csp3-Csp2-Cl = 110.2(1.0), ∠Csp2-Csp3-Cl = 113.1(1.2)°, ∠H-Csp3-H = 109.5° (assumed), ∠CC-H = 120.0° (assumed) and ∠φ = 108.9(3.4)°.  相似文献   

14.
In 4‐chloro‐7‐(2‐de­oxy‐β‐d ‐erythro‐pento­furanos­yl)‐7H‐pyr­rolo­[2,3‐d]­pyrimidine‐2,4‐diamine, C11H14ClN5O3, the conformation of the N‐glycosylic bond is between anti and high‐anti [χ = −102.5 (6)°]. The 2′‐deoxy­ribofuranosyl unit adopts the C3′‐endo‐C4′‐exo (3T4) sugar pucker (N‐type) with P = 19.6° and τm = 32.9° [terminology: Saenger (1989). Landolt‐Börnstein New Series, Vol. 1, Nucleic Acids, Subvol. a, edited by O. Madelung, pp. 1–21. Berlin: Springer‐Verlag]. The orientation of the exocyclic C4′—C5′ bond is +ap (trans) with a torsion angle γ = 171.5 (4)°. The compound forms a three‐dimensional network that is stabilized by four inter­molecular hydrogen bonds (N—H⋯O and O—H⋯N) and one intra­molecular hydrogen bond (N—H⋯Cl).  相似文献   

15.
The title compound, 2,4‐diamino‐5‐bromo‐7‐(2‐deoxy‐2‐fluoro‐β‐d ‐arabinofuranosyl)‐7H‐pyrrolo[2,3‐d]pyrimidine, C11H13BrFN5O3, shows two conformations of the exocyclic C4′—C5′ bond, with the torsion angle γ (O5′—C5′—C4′—C3′) being 170.1 (3)° for conformer 1 (occupancy 0.69) and 60.7 (7)° for conformer 2 (occupancy 0.31). The N‐glycosylic bond exhibits an anti conformation, with χ = −114.8 (4)°. The sugar pucker is N‐type (C3′‐endo; 3T4), with P = 23.3 (4)° and τm = 36.5 (2)°. The compound forms a three‐dimensional network that is stabilized by several intermolecular hydrogen bonds (N—H...O, O—H...N and N—H...Br).  相似文献   

16.
The synthesis of iodine(I) complexes with either benzoimidazole or carbazole-derived sp2 N-containing Lewis bases is described, as well as their corresponding silver(I) complexes. The addition of elemental iodine to the linear two-coordinate Ag(I) complexes produces iodine(I) complexes with a three-center four-electron (3c–4e) [N−I−N]+ bond. The 1H and 1H-15N HMBC NMR studies unambiguously confirm the formation of the complexes in all cases via the [N−Ag−N]+→[N−I−N]+ cation exchange, with the 15N NMR chemical shift change between 94 to 111 ppm when compared to the free ligand. The single crystal X-ray crystallographic studies on eight I+ complexes revealed highly symmetrical [N−I−N]+ bonds with I−N bond distances of 2.21–2.26 Å and N−I−N angles of 177–180°, whilst some of the corresponding Ag+ complexes showed a clear deviation from linearity with N−Ag−N angles of ca. 150° and Ag−N bond distances of 2.09–2.18 Å.  相似文献   

17.
In the phosphoric triamides N,N,N′,N′‐tetrabenzyl‐N′′‐(2‐chloro‐2,2‐difluoroacetyl)phosphoric triamide, C30H29ClF2N3O2P, (I), N,N,N′,N′‐tetrabenzyl‐N′′‐(3‐fluorobenzoyl)phosphoric triamide, C35H33FN3O2P, (II), and N,N,N′,N′‐tetrabenzyl‐N′′‐(3,5‐difluorobenzoyl)phosphoric triamide, C35H32F2N3O2P, (III), the tertiary N atoms of the dibenzylamido groups have sp2 character with minimal deviation from planarity. The sums of the three bond angles about the N atoms in (I)–(III) deviate by less than 8° from the planar value of 360°. The geometries of the tertiary N atoms in all phosphoric triamides with C(O)NHP(O)[N]2 skeletons deposited in the Cambridge Structural Database [CSD; Allen (2002). Acta Cryst. B 58 , 380–388] have been examined and the bond‐angle sums at the two tertiary N atoms (SUM1 and SUM2) and the parameter ΔSUM (= SUM1 − SUM2) considered. It was found that in compounds with a considerable ΔSUM value, the more pyramidal N atoms are usually oriented so that the corresponding lone electron pair is anti with respect to the P=O group. In (I), (II) and (III), the phosphoryl and carbonyl groups, separated by an N atom, are anti with respect to each other. In the C(O)NHP(O) fragment of (I)–(III), the P—N bond is longer and the O—P—N angle is contracted compared with the other two P—N bonds and the O—P—N angles in the molecules. These effects are also seen in analogous compounds deposited in the CSD. Compounds with [C(O)NH]P(O)[N]X (X≠ N), such as compounds with a [C(O)NH]P(O)[N][O] skeleton, have not been considered here. Also, compounds with a [C(O)NH]2P(O)[N] fragment have not been reported to date. In the crystal structures of all three title compounds, adjacent molecules are linked via pairs of P=O...H—N hydrogen bonds, forming dimers with Ci symmetry.  相似文献   

18.
Element-Element Bonds. II. Synthesis and Structure of an Anellated Tetrastibaadamantane, Formed by Antimony(III) Chloride and Sodium Cyclopentadienide Revising the reaction between antimony(III) chloride and sodium cyclopentadienide in tetrahydrofuran (THF), originally published by FISCHER und SCHREINER [3], we could not verify the stated formation of tetra(cyclopentadienyl)distibane being red both in the solid and in solution. The pale yellow compound isolated instead is sodium [18-cyclopenta-2,4-dienyl-4,8,12-cyclopenta-2,4-diene-1,1,2-triyl-3a,8a-epistibino-tricyclopenta[1,4,7]tristiboninide] = 3 tetrahydrofuran 1 . Shown by an x-ray crystal structure determination (?45°C; monoclinic; Cc; a = 1882.7(9); b = 1183.5(5); c = 1733.8(13) pm; β = 93.38(5)°; Z = 4; R = 0.043) three (μ3-C5H3) units together with four antimony atoms build up a tetrastibaadamantane framework with a (σ-C5H5) and a (μ2-C5H3?) group as additional substituents. Nearly centric above the anionic ring a sodium cation coordinated by three THF molecules is placed. Characteristic bond lengths and angles lie in the following ranges: Sb? C(sp2) 212–216; Sb? C(sp3) 216–228; Na? C 270–284; Na? O 226–235 pm; C? Sb? C 91–97; Sb? C? Sb 109–110°. 1H and 13C-{1H} n.m.r. spectra are discussed; the ion pair 1 shows a degenerate valency tautomerism in solution.  相似文献   

19.
The title mol­ecule, C11H12O3, is almost planar, with an average deviation of the C and O atoms from the least‐squares plane of 0.146 (4) Å. The geometry about the C=C bond is trans. The phenyl ring and –COOCH3 group are twisted with respect to the double bond by 9.3 (3) and 5.6 (5)°, respectively. The endocyclic angle at the junction of the propenoate group and the phenyl ring is decreased from 120° by 2.6 (2)°, whereas two neighbouring angles around the ring are increased by 2.3 (2) and 0.9 (2)°. This is probably associated with the charge‐transfer interaction of the phenyl ring and –COOCH3 group through the C=C double bond. The mol­ecules are joined together through C—H?O hydrogen bonds between the methoxy and ester groups to form characteristic zigzag chains extended along the c axis.  相似文献   

20.
Crystal Structure of (Me4N)3[Ir(SCN)6], Vibrational Spectra and Normal Coordinate Analysis From a mixture of the linkage isomers [Ir(NCS)n(SCN)6–n]3–, n = 0–2, pure [Ir(SCN)6]3– has been isolated by ion exchange chromatography on diethylaminoethyl cellulose. The X-ray structure determination on a single crystal of (Me4N)3[Ir(SCN)6] (trigonal, space group R3, a = 14.838(2), c = 23.827(1) Å, Z = 6) reveals the presence of two crystallographically independent complex anions which C3i symmetry correlates with the cation/anion ratio 3 : 1. The thiocyanate ligands are exclusively S-coordinated with the average Ir–S distance of 2.384 Å and the Ir–S–C angle of 106.4°. The torsion angles S–Ir–S–C are 17.5 and 42.1°. The IR and Raman spectra of the (n-Bu4N) salt are assigned by normal coordinate analysis based on the molecular parameters of the X-ray determination. The valence force constant fd(IrS) is 1.57 mdyn/Å.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号