首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nitride Sulfide Chlorides of the Lanthanides. III. Synthesis and Crystal Structure of Pr5N3S2Cl2 By reacting praseodymium with sulfur, sodium azide and praseodymium trichloride in sealed, evacuated silica tubes (850°C, 7 d), the nitride sulfide chloride Pr5N3S2Cl2 is obtained in case of a 4:2:1:1 molar ratio of the reactants (Pr:S:NaN3:PrCl3). A slight excess of trichloride or the addition of NaCl as a flux supports the yield of brownish red, rod-shaped transparent crystals which prove to be stable against hydrolysis. The crystal structure (monoclinic, C2/m (no. 12), a = 1540.2(1), b = 400.92(3), c = 1656.3(1) pm, β = 101.24(1)°, Z = 4, R = 0.039, Rw = 0.028) was determined by means of X-ray single crystal data. Thus five crystallographically different cations (Pr3+) are present which with three distinct kinds of nitride anions (N3?) build up two types of translationally commensurate chains from interconnected [NPr4] tetrahedra. With an additional edge per “chain-link” in chain I, two single chains [NPr3/3ePr1/1t]3+ (?[NPr2]3+) of cis-edge connected [NPr4] tetrahedra (known from the Sm4N2S3-type structure) are condensed into the double chain [(N1){(Pr1)(2+2)/(2+2)e,e(Pr2)(2+1)/(2+1)e,v}(N2)(Pr3)1/1t]3+ (?[N2Pr3]3+). Chain II consists of two single chains [NPr2/2vPr2/1t] 6+ (?[NPr3]6+) of vertex-connected [NPr4] tetrahedra (known from the Sm3NS3-type structure), which are condensed to the double chain [(N3)(Pr4)2/2e(Pr5)2/2v]3+ (?[NPr2]3+) via an additional edge per “chain-link” too. Both types of chains are bundled along [010] like a closest packing of rods. Four crystallographically different but by X-ray diffraction indistinguishable anions S2? and Cl? hold both cationic double chains together and also adjust the charge balance in a molar ratio of 1 : 1.  相似文献   

2.
Reactions of KI, Pr, PrI3, and Os in niobium tubes at 800° yielded black, air- and moisture-sensitive crystals of Kpr6I10Os which were characterized by single crystal X-ray diffraction (orthorhombic, Pnma, a = 15.362(3), b = 13.498(2), c = 14.128(3) Å, Z = 4, R(F)/Rw = 4.4/5.6%). Subsequent parallel experiments also gave, according to Guinier powder pattern data, the isostructural compounds CsPr6I10Fe (a = 15.312(2), b = 13.426(1), c = 14.154(1) Å), CsLa6I10Fe (a = 15.523(2), b = 13.646(2), c = 14.334(1) Å) and CsLa6I10Mn (a = 15.457(4), b = 13.737(2), c = 14.329(2) Å). The important structural feature is the presence of octahedral rare-earth-metal cluster units R6 that are centered by a transition-metal atom Z and bridged and interconnected by halide atoms. The new compounds exhibit the same general pattern of halide connectivity (R6Z)XXXX as do the triclinic compounds R6X10Z. However, the structural arrangement of the metal octahedra is significantly different; they are linked by Ii–i atoms into zigzag chains along [010] and these are interconnected into a three dimensional network by Ii–a atoms to form channels in which the alkali-metal atoms are located. The introduction of alkali-metal atoms into reactions leads to new quaternary compounds with discrete rare-earth-metal clusters centered by transition metals and more open structure frameworks. Measurements of the temperature dependencies of the magnetic susceptibilities for CsLa6I10Fe and CsLa6I10Mn are consistent with expectations for 17- and 16-electron cluster systems, respectively.  相似文献   

3.
The kinetics of the “a” and “b” band emissions arising from the 1Σ ← 3Ou and 1Σ ← 3lu transitions of the diatomic mercury molecule at λmax ~ 4850 Å and 3350 Å, respectively, have been studied at low concentrations of mercury in the presence of N2, C2H6, C3H8, and N2O. Rate constant values have been obtained for the following reactions of the excimer molecule: Hg2(3lu) + N2 → Hg2(3Ou) + N2 and Hg2(3Ou) + RH → Hg2(1Σ) + RH, where RH = C2H6 or C3H8. From a consideration of the detailed kinetics of band emissions, it was also possible to derive rate constants for the quenching reactions of Hg(3P0) atoms. These values are in reasonable agreement with those obtained previously from monitoring atom concentrations directly by 4047 Å absorbiometry.  相似文献   

4.
Studies on solute–solvent interactions of oligo(m-benzamide)s in N,N-dimethylacetamide (DMA) have been carried out. The enthalpies of solution have been measured for oligo(m-benzamide)s and oligo(m-phenylene)s in DMA and benzene. Contributions of enthalpies of cavitation and dispersion interaction to the enthalpy of transfer from benzene to DMA, ΔHtr (Ben → DMA), have been examined for oligo(m-phenylene)s. A considerable contribution of excess enthalpy, ΔHE (Ben → DMA), to ΔHtr (Ben → DMA) has been found, which increases with the number of benzene rings of the solute. By assuming that ΔHE (Ben → DMA) of diphenyl (DP) is equal to that of benzanilide (BA) in DMA, the amide hydrogen bond enthalpy of BA in DMA, ΔH estimated by “the pure base method” corrected for the enthalpies of cavitation and dispersion interaction. The ΔH value has been given by the following expression including the unknown solubility parameter of BA, δBA: The evaluation of δBA has resulted in the conclusion that ?ΔH is smaller than 10.9 kJ mol?1. Moreover, ΔHtr (TMU → DMA) for oligo(m-benzamide)s has been examined. It has been shown that the amide hydrogen bonding ability of DMA is lower than that of TMU. The linearity of the plot of ΔHtr (TMU → DMA) against the number of amide bonds in the molecule has been explained by the increase in hydrogen bond enthalpies with the number of amide bonds in the molecule.  相似文献   

5.
1‐Allyl‐2,4,7‐trimethyl‐1 H‐indene ( 1 ) and 1‐(3‐buten‐1‐yl)‐4,7‐dimethyl‐1 H‐indene ( 2 ), which are to prepare from (2,4,7‐trimethylindenyl)lithium and allyl chloride or from (4,7‐dimethylindenyl)lithium and 4‐bromo‐1‐butene, react with n‐butyllithium yielding (1‐allyl‐2,4,7‐trimethylindenyl)lithium [LiL ( 1 a )] or [1‐(3‐buten‐1‐yl)‐4,7‐dimethylindenyl]lithium [LiL′ ( 2 a )], respectively. The reactions of the trichlorides of gadolinium, erbium, yttrium, lutetium, and ytterbium with 1 a or 2 a (mole ratio 1 : 2) in THF produce the bis(indenyl)lanthanide chloride complexes L2LnCl(THF) [Ln = Gd ( 1 b ), Er ( 1 c )], LLnCl(THF) [Y ( 2 d ), Lu ( 2 e )], or LYb(μ‐Cl)2Li(THF)2 ( 2 f ), whereas the trichlorides of the comparatively large samarium and lanthanum ions react with different molar amounts of 2 a in THF exclusively with formation of the tris(indenyl) complexes LSm ( 2 g ) or LLa(μ‐Cl)Li(Et2O)3 ( 2 h ), respectively. All new compounds were characterized by elemental analyses, mass spectrometry, and the diamagnetic compounds 2 d , 2 e and 2 h also by 1H and 13C{1H}‐NMR spectroscopy. The single crystal X‐ray structural analyses of 1 c , 2 f , 2 g and 2 h demonstrate that the alkenyl groups of the indenyl side chains are not coordinated to the lanthanide atoms.  相似文献   

6.
Phonon-assisted interchain hopping of negatively charged solitons in polyacetylene has been studied using a local chemical reaction model CH + CH4 → CH4 + CH. Quantum chemical characteristics of the electron transfer process have been analyzed in terms of the dynamic electron density and the mutual polarization moment. The CH stretching vibrational motion of CH4, which is a local model of the sp3 defect, has been found to play a significant role for the electron transfer. The excitation of the corresponding vibrational mode of the sp3 defect would promote the interchain hopping of the charged soliton. The electron transfer process has also been studied in terms of the “regional” density functional theory. It has been shown that the driving force of the electron transfer is represented by the regional chemical potentials.  相似文献   

7.
Carbometalates: Complex Anions equation/tex2gif-stack-4.gif [MoC4/26—] in the Crystal Structure of Pr equation/tex2gif-stack-5.gif [MoIIC2] Criteria for the existence of carbometalates are established and discussed in a broader context. The concept is then applied to the novel compound Pr2[MoC2], which is characterized by chemical analyses, X‐ray diffraction and metallography. The crystal structure (tetragonal, P42/mnm, Z = 4, a = 581.29(8) pm, c = 1032.53(14) pm) consists of layered polyanions equation/tex2gif-stack-6.gif[MoC4/26—] of distorted vertex and edge sharing MoC4 tetrahedra. Praseodymium is also in a distorted tetrahedral coordination by carbon. The physical properties show “bad metal” behaviour and localized magnetic 4f‐moments in agreement with the existence of Pr3+‐species. A detailed bonding analysis using both the electron localization function ELF and the COHP method justifies the interpretation of the title compound as a carbomolybdate(II).  相似文献   

8.
Selective Preparation of Twofold Diorganophosphido-bridged Metallatetrahedranes [Re2(MPR3)2(μ-PR2)2(CO)6] with Re2M2 Metal Core (M = Au, Ag) The reaction of the in situ prepared salt Li[Re2(AuPR)(μ-PR2)(CO)7Cl] (R = R′ = Cy ( 1 a ), R = Cy, R′ = Ph ( 1 b ), R = Ph, R′ = Cy ( 1 c ), R = Ph, R′ = Et ( 1 d ), R = Ph, R′ = Ph ( 1 e )) with one equivalent HPR in methanolic solution at room temperature yields the neutral cluster complexes [Re2(AuPR)(μ-PR2)(CO)7(ax-HPR) (R = R′ = R″ = Cy ( 2 a ), Ph ( 2 b ), R = R′ = Cy, R″ = Et ( 2 c ), R = Cy, R′ = R″ = Ph ( 2 d ), R = Cy, R′ = Ph, R″ = Et ( 2 e ), R = R″ = Ph, R′ = Et ( 2 f ), R = Ph, R′ = Cy, R″ = Et (2 g)). Photochemically induced these complexes react in the presence of the organic base DBU in THF solution to give the doubly phosphido bridged anions Li[Re2(AuPR)(μ-PR2)(μ-PR)(CO)6], which were characterized as salts PPh4[Re2(AuPR)(μ-PR2)(μ-PR)(CO)6] (R = R′ = R″ = Ph ( 3 a ), R = R′ = Ph, R″ = Cy ( 3 b ), R = Ph, R′ = Cy, R″ = Et ( 3 c ), R = R″ = Ph, R′ = Et ( 3 d )). These precursor complexes 3 then react with one equivalent of ClMPR (M = Au, Ag) to doubly phosphido bridged metallatetrahedranes [Re2(MPR3)2(μ-PR2)(μ-PR)(CO)6] (M = Au, R = R′ = R″ = Ph ( 4 a ), M = Au, R′ = Et, R = R″ = Ph ( 4 b ), M = Au, R = R′ = Ph, R″ = Cy ( 4 c ), M = Au, R = Cy, R′ = Ph, R″ = Et ( 4 d ), M = Ag, R = R′ = R″ = Ph ( 4 e )). All isolated cluster complexes were characterized and identified by the following analytical methods: NMR- (1H, 31P) and ν(CO) IR-spectroscopy and, additionally, complexes 2 b , 4 a and 4 e by X-ray structure analysis.  相似文献   

9.
A treatment of ionic-atmosphere effects upon symmetrical electron-transfer reactions resulting from added electrolyte is outlined. Relationships are derived on the basis of the extended Debye-Huckel model for the increase in the activation free energy, ΔGia*, associated with reorganization of the ionic atmosphere for homogeneous-phase reactions involving a pair of spherical reactants with varying internuclear distance R. Similar relationships apply to the energetics of symmetrical optical electron transfer, since the increase in the optical transition energy, ΔE, should equal the corresponding ionic atmosphere reorganization energy, E; under the anticipated linear response conditions, E = 4ΔGia*. The predicted ΔGia* (and hence ΔE) values increase sharply with increasing R, as a consequence of the diminished “sharing” of the ionic cloud surrounding the donor and acceptor sites under these conditions. Outer-sphere electrochemical reactions, featuring a single “near-isolated” reactant, are predicted to feature substantially larger ΔGia* values than for homogeneous processes proceeding with the reaction partners in contact. The influence of more specific “ionic atmosphere” effects upon ΔGia*, especially involving reactant-electrolyte ion pairing, is also discussed. Unlike that of the nonspecific ionic atmosphere, the nuclear reorganization process associated with counterion transport between donor and acceptor sites coupled with electron transfer is nonlinear in nature, so that E ≠ 4ΔGia*. Some recent experimental data for electrolyte effects upon the rate constants for ferrocenium-ferrocene self exchange and related systems are examined in the light of these considerations.  相似文献   

10.
The crystal structures of Mn5O8 and Cd2Mn3O8 are determined from single crystal and high resolution X-ray powder data. Both structures have very similar monoclinic unit cells, space group CC2/m, and are isotypic: Hence, the true formula of Mn5O8 is MnMnO8. The crystal structure consists of pseudohexagonal MnIV sheets (bc) with similar oxygen sheets on either side, giving a distorted octahedral coordination to the MnIV. As every fourth MnIV is missing in these “main layers”, their composition becomes Mn3O8, and chains of coordination octahedra linked by common edges become distinct. Above and below the empty MnIV sites are either MnII or CdII completing the composition MnMnO8 or Cd2Mn3O8 respectively. Examples of similar “double layer” structures are given.  相似文献   

11.
The calculus of the overlap integral for two states represented by the vibrational wave functions ψ and ψ is reduced to that of the Franck–Condon integral ?(0, x) = ∫ ψψ (t) dt. It is proved that for “numerical potentials” (as well as for a Dunham potential), this integral is given on each interval by a simple analytic expression in terms of the two potentials. The Franck–Condon factors are well determined by “coupling constants” related uniquely to the coordinates of the turning points of the potentials. An application to the band system BII? XΣ of Nα2 is compared with the usual numerical methods.  相似文献   

12.
At high levels of ab initio theory (6-31G*//4-31G), the most stable C4H isomer is indicated to be the nonplanar cyclobutadiene dication ( 1a ); the planar form, 1b , is indicated to be 7.5 kcal/mol less stable. The second most stable C4H isomer, the methylenecyclopropene dication, is indicated to prefer the perpendicular ( 2a ) over the planar ( 2b ) arrangement by 7 kcal/mol. The “anti van't Hoff” cyclo-(HB)2C?CH2 system ( 4 ), isoelectronic with 2 , also prefers the perpendicular conformation ( 4a ), and retains the C?C double bond. The linear butatriene dication ( 3 ) is the least stable C4H species investigated. The perpendicular (D2d) arrangement ( 3a ), permitting double allyl cationlike conjugation, is preferred over the planar D2h form ( 3b ) by 26 kcal/mol. The heat of formation of the most stable form of C4H, 1a , is estimated to be 623–640 kcal/mol. This species should be thermodynamically stable toward dissociation into smaller charged fragments.  相似文献   

13.
Reactions of dry THF/MeCN solutions of Ca[Re6SCl(Cla)6] with silylated derivatives E(SiMe3)2 (E = PhAs, PSiMe3, HN, O, S) and addition of trialkylphosphine PPr3 afford in high yields and at room temperature either the neutral clusters [Re6SX(PPr3)] ( 1 : X = As, 2 : X = P) or the ionic compounds [Re6SX(PPr3)]2+ · [Re6S6Cl8]2– ( 3 : X = NH, 4 : X = O, 5 : X = S). The compounds 1 – 5 were characterised by X‐ray crystal structure analysis. A di‐substitution reaction occurs on the {Re6SCl}4+ cluster core, where the two inner μ3‐chloro ligands Cli are substituted by X (X = As, P, NH, O, S) and all six terminal chloro ligands Cla are exchanged by terminal PPr3‐ligands.  相似文献   

14.
A new kind of polymeric chemosensor containing chiral naphthaldimine moiety in the side chain was synthesized by the reversible addition‐fragmentation chain transfer polymerization of N‐{[2‐(4‐vinylbenzyloxy)‐1‐naphthyl]‐methylene}‐(S)‐2‐phenylglycinol (VNP). The resulting polymers (PVNP) showed high selectivity for hydrogen sulfate relative to other anions including F?, Cl?, Br?, H2PO, CH3CO, and NO in tetrahydrofuran (THF) solution as judged from UV?vis, fluorescence, and circular dichroism spectrophotometric titrations. Compared with its monomer, the polymer has proven to be more attractive for detection of HSO in terms of sensitivity and reproducibility. Upon addition of the anion it gives remarkable spectral responses concomitant with detectable color change from colorless to pale yellow. Furthermore, the HSO‐induced CD or fluorescence signal can be totally reversed with addition of base and eventually recovered the initial state, leading to a reproducible molecular switch with two distinguished “on” and “off” states. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

15.
Density functional theory has been used to investigate the geometries, bonding, and vibrational frequencies of HC2nH (n = 1–13) and HC2n+1H (n = 2–12). Vertical excitation energies for the X1Σ → 11Σ transition of HC2nH (n = 1–5) and for the X3Σ → 13Σ transition of HC2n+1H (n = 2–5) have been calculated by the time‐dependent density functional theory and ab initio second‐order multiconfiguration perturbation method, respectively. On the basis of the present calculations, explicit expressions for the size dependence of excitation energy in linear polyynes HC2n+1H and HC2n+1H are suggested. Such analytical λ ? n relationships show good agreement with experimental observations. Theoretical investigations of relevant excited states demonstrate that distinct linear and nonlinear spectroscopic features in such polyynes can be ascribed to similarity and difference in bonding between the ground and excited states in HC2n+1H and HC2nH. © 2004 Wiley Periodicals, Inc. Int J Quantum Chem, 2004  相似文献   

16.
In the present article, two focal subjects, i.e., hydration of the NO and associated ion species in the Mg(NO3)2 solution are researched by using the ab initio method. Nitrate ions with the hydration number of 1–6 are optimized at the HF/6‐31+G* level. Their relative energies, binding energies, and v1‐NO frequencies are also presented. The investigation of the binding energies shows the hydration number is 3–6 in the solvent abundant environment. The associated species, including ion pairings, triple‐ and multiple‐ion clusters, are also optimized at the same level and their v1‐NO frequencies are calculated for comparing with the results in experiments. From the comparison, the new associated process via aqueous free ions → solvent‐shared ion pairings → solvent‐shared triple and multiple ion clusters → contact multiple ion clusters → amorphous crystal is proposed. © 2010 Wiley Periodicals, Inc. J Comput Chem 2010  相似文献   

17.
The McIver–Stanton rules concerning the symmetry of transition states have a counterpart in rules concerning the permutation symmetry of single steps in degenerate rearrangements, derivable with the aid of Longuet–Higgins group theory. The generalized rules are illustrated by the widely studied PX5 polytopal rearrangements. The analysis leads to prediction of hitherto unexplored “pseudorotation” pathways for rearrangements in ethyl and homotetrahedryl cations. CNDO computations of system energies, gradients, and curvatures at critical points on the C2H and C5H surfaces indicate that symmetry-breaking in keeping with the permutation-theoretic predictions is a key feature of the low-energy rearrangements of these systems. In particular, computation indicates that the C2v “classical” homotetrahedral cation corresponds to an energy maximum rather than an energy minimum, or a transition state.  相似文献   

18.
Using the results of ab initio calculations, by comparison of the “1s orbital energies” of the C atom in the compounds C6H6, C5H, C3H6 (cyclopropane), C2H4 as well as at the C atom itself the bond electrons were found to have a significant influence on the inner electrons. The reason for this is pointed out and an explanation is given. The connection between the bonding and this “1s orbital energy” change as well as the importance of this result for quantum-chemical “models” is discussed.  相似文献   

19.
The coordination polymers [CuBr(1, 7‐phen‐κN7)] ( 1a ), [CuI(1, 7‐phen)] ( 2a ) and [(CuI)2(1, 7‐phen‐κN7)] ( 2b ) may be prepared by treatment of the appropriate copper(I) halide with 1, 7‐phenanthroline (1, 7‐phen) in acetonitrile. 1a exhibits staircase CuBr double chains, 2a novel quadruple CuI chains. Their thermal properties were investigated by DTA‐TG and temperature resolved powder X‐ray diffraction. On heating, both 1:1 compounds decompose to 2:1 polymers and then finally to CuBr or CuI. With 4, 7‐phenanthroline (4, 7‐phen), CuBr affords both 1:1 and 2:1 complexes ( 5a , 5b ), CuI 1:1 , 2:1 and 3:1 complexes( 6a , 6b , 6c ) in acetonitrile at 20 °C. 5a and 6a display lamellar coordination networks, with the former containing zigzag CuBr single chains, the latter 4‐membered (CuI)2 rings. A second 2:1 complex [(CuI)2(4, 7‐phen‐μ‐N4, N7)] ( 6b ′) with staircase CuI double chains can be obtained by reacting CuI with 4, 7‐phen in a sealed glass tube at 110 °C. Both 5a and 6a exhibit thermal decomposition pathways of the general type 1:1 → 2:1 → 3:1 → CuX, and novel CuX triple chains are proposed for the isostructural 3:1 polymers 5c and 6c . X‐ray structures are reported for complexes 1a , 2b , [(CuCN)3(CH3CN)(1, 7‐phen‐μ‐N1, N7)] ( 3c· CH3CN), [CuSCN(1, 7‐phen‐κN7)] ( 4a ), 5a , 6a and [CuCN(4, 7‐phen‐μ‐N4, N7)] ( 7a ).  相似文献   

20.
[Li(THF)4][[NN]2Nd2Cl25-O)Li3] ( 2 ) ([NN]3– = ([Me3SiNCH2CH2)3N]3–) was prepared by transmetallation of Li3[NN] with anhydrous neodymium trichloride in THF. After recrystallization from diethylether/pentane (1 : 2) light blue crystals of 2 were obtained, which were characterized by single crystal X-ray diffraction. Space group: P21/n, Z = 4, lattice dimensions at 203 K: a = 1260.8(3), b = 3832.5(8), c = 1569.2(3) pm, β = 106.07(3)°, R1 = 0.0541. In the anion of 2 a nearly trigonal bipyramidal [Nd2Li35-O)]7+ unit is observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号