首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Distribution of polymer deposition in an inductively coupled rf discharge system is studied as a function of level of discharge power with acetylene and styrene as monomers. When a fixed flow rate is used, the discharge power has a relatively small effect on the pattern of distribution of polymer deposition as long as values of W/FM, where W is discharge wattage, F is flow rate, and M is molecular weight of monomer, are maintained above a critical level to maintain full glow in the reaction tube. It has been shown that plasma polymerization of two monomers which have different molecular weights can be compared in a fair manner by selecting conditions to yield similar value of W/FM.  相似文献   

2.
The influence of operating conditions (W/FM parameter: W input energy of rf power; F flow rate of monomer; M molecular weight of monomer) on glow discharge polymerization of tetramethylsilane (TMS) was investigated by infrared spectroscopy and ESCA. Elemental analyses showed that the compositions of the polymers formed strongly depended on the level of the W/FM parameter, i.e., whether the W/FM value was more or less than 190 MJ/kg. The infrared spectra indicated that these polymers were composed of Si? H, Si? O, Si? C, Si? CH3, and Si? CH2 groups, and that there was no significant difference in structural features between polymers prepared at W/FM parameters of more or less than 190 MJ/kg. ESCA spectra (C1s and Si2p core-level spectra) showed that the polymers included carbonized carbon, aliphatic carbon Si? C, C? O, Si? O, and SiO2 species, and that the sum of carbonized and aliphatic carbons reached more than 50%. Raising the W/FM value increased the formation of the carbonized carbon but did not influence the formation of Si units such as Si? C and Si? O groups. From this evidence the rupture of Si? CH3 bonds in the polymer forming process is emphasized. The magnitude of the W/FM parameter may be related to the detachment of hydrogen from the aliphatic carbon units.  相似文献   

3.
Plasma polymerizations of ethylene and tetrafluoroethylene are compared. In the plasma polymerization of ethylene and of tetrafluoroethylene, glow characteristics play an important role. Glow characteristic is dependent on a combined factor of W/Fm, where W is discharge power and Fm is monomer flow rate. At higher flow rates, higher wattages are required to maintain “full glow.” In the plasma polymerization of tetrafluoroethylene, simultaneous decomposition of the monomer competes with plasma polymerization. Above a certain value of W/Fm, decomposition becomes the predominant reaction, and the polymer deposition rate decreases with increasing discharge power. ESCA results indicate that the plasma polymer of tetrafluoroethylene that is formed in an incomplete glow region (low W/Fm) is a hybrid of polymers of plasma polymerization and of plasma-induced polymerization of the monomer. Polymers formed under conditions of high W/Fm to produce “full glow” are similar, regardless of the extent of decomposition of the monomer. They contain carbons with different numbers of F(CF3, ? CF2? , >CF? , >C<) and carbons bonded to other more electronegative substituents.  相似文献   

4.
Two kinds of hydrocarbon type monomers and three kinds of organosilicons were polymerized by a low‐temperature cascade arc argon plasma torch. Their deposition behaviors were studied as a function of experimental parameters and monomer elemental compositions. It was found that the normalized deposition rate (DR), expressed as deposition yield of DR/(FM)m, was determined by a composite operational parameter, W*(FM)c/(FM)m, where W is the power input, and (FM)c and (FM)m are the mass flow rates of carrier gases and monomers, respectively. Experimental results indicated that the deposition yield is highly dependent on the elementary compositions of monomers. Optical emission spectroscopy study on the argon plasma torch showed that the emission intensity of excited argon neutrals was proportional to the value of the parameter W*(FM)c. These results further certified that excited argon neutrals are the main energy carriers from the cascade arc column to activate monomers in the argon plasma torch. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 967–982, 1999  相似文献   

5.
Under conditions of plasma polymerization, we are dealing with the “reactive” or “self-exhausting” rather than the “nonreactive” or “non-self-exhausting” gas phase (plasma). Therefore, many parameters that define the gas phase, such as system pressure and monomer flow rate, which are measured in the nonplasma state (before glow discharge is initiated), do not apply to a steady state of plasma, the conditions under which most of the studies on plasma polymerization are carried out. Consequently, information based on: (1) the polymer deposition rate measured at a fixed flow rate and discharge power, (2) the dependence of deposition rate on flow rate at fixed discharge power, or (3) the dependence of deposition rate on discharge power at fixed flow rate, does not provide meaningful data that can be used to compare the characteristic nature of various organic compounds in plasma polymerization. The significance and true meaning of experimental parameters applicable to conditions of plasma polymerization are discussed. The most important feature is that plasma polymerizations of various organic compounds should be compared at comparable levels of composite discharge power parameter W/FM, where W is discharge power, F is the monomer flow rate (given in moles), and M is the molecular weight of a monomer.  相似文献   

6.
Glow discharge polymerization between hexamethyldisilazane (HMDSZ) and trimethylsilyldimethylamine (TMSDMA) was compared by means of infrared spectroscopy and ESCA analysis. Infrared spectra pointed out differences in chemical structure between the polymers prepared from the two monomers, although the two polymers were mainly composed of resembling units such as Si? CH3, Si? CH2, Si? H, Si? O? Si, and Si? O? C groups: (i) The polymers prepared from TMSDMA contained N → O group, but the polymers from HMDSZ did not contain this group. (ii) Influences of the W/FM parameter (W is the input energy of rf power, F the flow rate of the monomer, and M the molecular weight of the monomer) appeared on decreasing the C? N group and increasing the C?O group in the TMSDMA system, but little influence appeared in the HMDSZ system. ESCA spectra (C1s, Si2p, and N1s core levels) supported the differences between the two polymers elucidated by infrared spectroscopy, and pointed out differences in susceptibility of the Si? N bond to plasma: The N? Si sequence of TMSDMA was completely ruptured in discharge to yield polymers, and the Si? NH? Si sequence of HMDSZ remained in considerable amount.  相似文献   

7.
Glow discharge polymerizations in systems of trimethoxymethylsilane, trimethoxyvinylsilane, tetramethylsilane, and trimethylvinylsilane were compared by elemental analysis, infrared (IR) spectroscopy, and ESCA to reveal effects of methoxyl, methyl, and vinyl substituents. The substituent effects appeared in the chemical composition of the polymers formed especially at low W/FM values. Methoxy groups depressed the C/Si and H/Si ratios of the polymers rather than the methyl groups, whereas vinyl groups increased the C/Si and H/Si ratios. On IR spectra the polymers formed from silanes that contained methoxy groups showed fewer absorptions due to Si? H groups and strong absorptions due to Si? OH groups. The polymers from those that contained no methoxy groups showed absorptions of Si? H groups and no absorptions of Si? OH groups. These differences in the environment of Si atoms of polymeric chains also appeared in the Si2p core level spectra, thus indicating the different fragmentation patterns of the starting materials in glow discharge.  相似文献   

8.
Plasma polymerization of ethylene glycol monomethylether (EGMME) was investigated by elemental analysis, infrared spectroscopy, and ESCA. The surface and permeation properties for the formed polymers were discussed. EGMME was plasma-polymerized to yield films. The films contained a large amount of oxygen-containing groups such as hydroxy, carbonyl, carboxylate ester, and ether groups. The formation of polymers having hydroxy groups was favorable in plasma polymerization at low W/FM values. Their surface energy was high (63.2–57 dyn/cm) and decreased with increasing the W/FM value. The plasma-polymers from EGMME had slightly high water-vapor permeability and low oxygen and nitrogen permeabilities. The plasma-polymers, conclusively, are characterized to have high selectivity in water-vapor permeation.  相似文献   

9.
Plasma polymer films were deposited from methyl methacrylate (MMA) vapor under various plasma conditions and XPS and FTIR used to study the changes to the compositions of the films as they were stored in air for longer than 1 year. The plasma power input per monomer mass unit (W/FM) markedly affected the composition of the freshly deposited MMA plasma polymers. A low value of W/FM led to a high degree of retention of the original monomer structure, whereas a high value of W/FM resulted in substantial monomer fragmentation and the formation of a partially unsaturated material considerably different to conventional PMMA. As the MMA plasma coatings were stored in ambient air after fabrication, all showed spontaneous oxidative changes to their composition, but the extents and reaction products differed substantially. Deposition at low W/FM led to moderate oxidative changes, whereas high power led to a pronounced increase in the oxygen content over time and resulted in a wide range of carbon–oxygen functionalities in the aged material. As the initial compositions/plasma deposition conditions thus influenced the oxidative postdeposition reactions, MMA plasma polymers deposited under different conditions not only varied in their initial composition but then became even more diverse as they aged. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 985–1000, 1998  相似文献   

10.
Factors which influence the distribution of polymer deposition in an electrodeless glow-discharge system were investigated for acetylene and ethylene. Under the conditions in which “full glow” is maintained, the distribution of polymer deposition from pure monomer flow systems is nearly independent of flow rate of monomer or of the system pressure in discharge, but is largely determined by the characteristic (absolute) polymerization rates (not deposition rate) of the monomers. Acetylene has a high tendency to deposit polymer near the monomer inlet, whereas ethylene deposits polymer more uniformly in wider areas in the reactor. The addition of carrier gas such as argon or partially copolymerizing gas such as N2, H2, and CCl2F2 was found to narrow the distribution of polymer deposition. The distribution of polymer deposition is also influenced by a glow characteristic which is dependent on flow rate and discharge power.  相似文献   

11.
Plasma polymerization of tetra fluoroethylene (TFE), perfluoro-2-butyl-tetrahydrofuran (PFBTHF), ethylene, and styrene were investigated in various combinations of monomer flow rates and discharge wattages for the substrate temperature range of ?50 to 80°C. The polymer deposition rates can be generally expressed by k0 = Ae?bt, where k0 is the specific deposition rate given by k0 = (deposition rate)/(mass flow rate of monomer), A is the preexponential factor representing the extrapolated value of k0 at zero absolute temperature, and b is the temperature-dependence coefficient. It was found that the value of b is not dependent on the condensibility of monomer but depends largely on the group of monomer; that is, perfluorocarbons versus hydrocarbons. The values of A are dependent on domains of plasma polymerization. In the energy deficient region A is given by A = α(W/FM)n, where α is the proportionality constant, W is discharge wattage, FM is the mass flow rate, and n is close to unity. In the monomer deficient region A becomes a constant. The kinetic equation is discussed in view of the bicyclic rapid step-growth polymerization mechanisms.  相似文献   

12.
Plasma polylmerization occurs in plasmas surrounded by surfaces and polymer formation is one of the complicated interactions that take place between active species and molecules which constitute surfaces and gas phases. Effects of reactor wall, substrate materials, flow rate, and discharge power on polymer formation, and properties of polymer deposits were investigated by ESCA, IR (infrared) spectroscopy, and the measurement of system pressure. The effect of surface is important at the initial stage of plasma polymerization which can be easily detected by the system pressure change; however, integrated properties such as IR spectroscopy and the deposition rate show the effect in a less pronounced manner. ESCA, which reflects the properties of surface (approximately 20 A? in depth), showed the effect of surface in an even less sensitive manner. The amount and properties (including the effects of surfaces) are dependent on plasma polymerization parameter W/FM(W, wattage; F, volume flow rate; and M, molecualar weight of monomer) and the location of deposition within a reactor. IR and ESCA data clearly showed the dependence of polymer properties on W/FM; i.e., increase of W and decrease of M to be equivalent. When all these factors were kept under control, the reproducibility of plasma polymerization was found to be excellent.  相似文献   

13.
Plasma polymerization of trimethylsilane (TMS) was carried out and investigated in a direct current (dc) glow discharge. The formation of TMS plasma glow was carefully examined with optical photography as compared with an Ar dc glow discharge. It was found that there exists a significant difference in the nature of glow and how the glow is created in TMS glow discharge, which polymerizes or causes deposition, and that of monatomic gas such as Ar, which does not polymerize or deposit. In dc Ar discharge, the negative glow, which is the most luminous zone in the discharge, develops in a distinctive distance away from the cathode surface, and the cathode remains in the dark space. In a strong contrast to this situation, in TMS dc discharge, the primary glow that is termed as cathode-glow in this paper appears at cathode surface, while a much weaker negative glow as a secondary glow was observed at the similar location to where the Ar negative glow appears. The deposition results of plasma polymers and gas phase composition data of TMS in a closed reactor acquired by ellipsometry and residual gas analyzer (RGA) measurements clearly indicated that the cathode-glow in TMS glow discharge is mainly associated with chemically reactive species that would polymerize or form deposition, but the negative glow is related to species from simple gases that would not polymerize or deposit. Based on the glow location with respect to the cathode, it was deduced that the cathode-glow is due to photon emitting species created by molecular dissociation of the monomer that is caused by low energy electrons emanating from the cathode surface. The negative glow is due to the ionization and the formation of excited neutrals of fragmented atoms caused by high-energy electrons. Polymerizable species that would cause deposition of material (plasma polymers) are created mainly by the fragmentation of monomer molecules by low energy electrons, but not by electron-impact ionization of the monomer.  相似文献   

14.
Photopolymerizable three-ring phenylacetylene (3PA) liquid crystalline compounds were synthesized and the physical properties of the monomers and polymers were characterized in the expectation of obtaining high birefringence polymers. 3PA monomers containing acrylate substituents exhibited enantiotropic nematic phases and high δn values of around 0.35. Homogeneous alignment was retained after polymerization and high values of δn (~0.34) for the polymers were obtained. The orientation of the monomers at the photopolymerization temperature was almost fixed, such that δn and the order parameter of the polymers varied with the polymerization temperature.  相似文献   

15.
Weakly ionized, radio-frequency, glow-discharge plasmas formed from methyl ether or the vapors of a series of dimethyl oligo(ethylene glycol) precursors (general formula: H-(CH2OCH2)n-H;n=1 to 4) were used to deposit organic thin films on polytetrafluoroethylene. X-ray photoelecton spectroscopy (XPS) and static secondary ion mass spectrometry (SIMS) of the thin films were used to infer the importance of adsorption of molecular species from the plasma onto the surface of the growing, organic film during deposition. Films were prepared by plasma deposition of each precursor at similar deposition conditions (i.e., equal plasma power (W), precursor flow rate (F), and deposition duration), and at conditions such that the specific energy (energy/mass) of the discharge (assumed to be constrained byW/FM, whereM=molecular weight of the precursor) was constant. At constantW/FM conditions, two levels of plasma power (and, hence, twoFM levels) and three substrate temperatures were examined. By controlling the energy of the discharge (W/FM) and the substrate temperature, these experiments enabled the study of effects of the size and the vapor pressure of the precursor on the film chemistry. The atomic % of oxygen in the film surface, estimated by XPS, and the intensity of theC-O peak in the XPS Cls spectra of the films, were used as indicators of the degree of incorporation of precursor moieties into the plasma-deposited films. Analysis of films by SIMS suggested that these two measures obtained from XPS were good indicators of the degree of retention in the deposited films of functional groups from the precursors. The XPS and SIMS data suggest that adsorption of intact precursor molecules or fragments of precursor molecules during deposition can have a significant effect on film chemistry. Plasma deposition of low vapor pressure precursors provides a convenient way of producing thin films with predictable chemistry and a high level of retention of functional groups from the precursor.  相似文献   

16.
The preparation and radical-initiated polymerization of a carbazole-substituted N-acylated dehydroalanine, namely, 2-(9-carbazolyl)acetylaminopropenoic acid ( 7 ) and its methyl ester ( 6 ) is reported. The monomers 6 and 7 were prepared by dehydrochlorination of N-acylated β-chloroalanine derivatives. The monomer model compounds for the two polymers, namely, 2-(9-carbazolyl)acetylamino-2-methylpropanoic acid ( 11 ) and its methyl ester ( 10 ), were also prepared. The polymers and their monomer model compounds were characterized by elemental analysis, IR and 1H-NMR spectra. The polymers 12 and 13 of different molecular weights could be obtained by changing the monomer-to-initiator ratios used in polymerization experiments.  相似文献   

17.
Two new N-substituted polyethylenimines containing carbazole and acridone groups on the side chains were prepared. The polymers were obtained by cationic ring opening polymerization of the corresponding 2-oxazoline monomers. The carbazole containing oxazoline was low melting and could be polymerized in bulk; however the acridone containing monomer had a high melting point and solution polymerization had to be used. This paper describes the synthetic procedures used to obtain these polymers.  相似文献   

18.
Plasma polymerizations (under 13.5-MHz radiofrequency inductively coupled glow discharge) of some organic compounds are investigated by their properties (elemental analysis, surface energy, and infrared spectra) and their relations to the concentrations of free radicals in the polymers as detected by electron spin resonance (ESR) spectroscopy. Monomers that have been investigated are hexamethyldisiloxane, tetrafluoroethylene, acetylene, acetylene/N2, acetylene/H2O, acetylene/N2/H2O, allene, allene/N2, allene/H2O, allene/N2/H2O, ethylene, ethylene/N2, ethylene oxide, propylamine, allylamine, propionitrile, and acrylonitrile. Plasma-polymerized polymers generally contain oxygen, even if the starting monomers do not contain oxygen. This oxygen incorporation is related to the free-radical concentration in the polymer. Molecular nitrogen copolymerizes with other organic monomers such as acetylene, allene, and ethylene, and their properties are very similar to those of plasma-polymerized polymers from nitrogen-containing compounds such as amines and nitriles. The addition of water to the monomer mixture reduces in a dramatic manner the concentration of free radicals in the polymer and consequently the oxygen-incorporation after the polymer is exposed to air. The concentrations of free radicals (by ESR) are directly correlated to the change of the properties of plasma-polymerized polymers with time of exposure to the atmosphere. These changes are primarily the introduction of carbonyl (and possibly hydroxyl) groups. The addition of water to the plasma introduces these groups during the polymerization.  相似文献   

19.
The syntheses of two new pyrene-containing monomers—2-(1-pyrenyl)methyl-2-oxazoline ( 6 ) and methyl 2-(1-pyrenyl)acetamidopropenoate ( 12 )—and their polymerization are described. Cationic isomerization polymerization of 6 with ethylene glycol ditosylate initiator gave poly[N-(1-pyrenyl)acetyl ethylenimine] ( 7 ) and free-radical polymerization of 12 with AIBN initiator gave poly[methyl 2-(1-pyrenyl)acetamidopropenoate] ( 15 ). The monomer model compounds of the two polymers, namely, N,N-diethyl(1-pyrenyl)acetamide ( 9 ) and methyl 2-methyl-2-(1-pyrenyl)acetamidopropanoate ( 14 ), were also synthesized. The polymers were characterized by elemental analysis, IR spectroscopy, and a comparison of their 1H-NMR spectra with those of the respective monomer model compounds.  相似文献   

20.
A glow discharge polymerization technique was applied in the preparation of germanium-containing polymers. The colorless and transparent polymer films formed from tetramethylgermanium (TMG) were investigated by elemental analysis, infrared (IR) spectroscopy, and ESCA. The reaction of TMG was accompanied by the rupture of bonds between Ge and CH3 groups which led to mixtures of polymers that consisted of CH3, CH2, Ge? CH3, Ge? O? C, and Ge? O? Ge groups and germanium metal. Most Ge species present at the outermost layers of the films were oxidized subsequently by air, whereas the Ge species at the inner layers still existed as Ge metal. This film-forming process can be explained by the concept of atomic polymerization proposed by Yasuda.
  • 1 See H. Yasuda, J. Polym. Sci. Macromol. Rev., 16 , 199 (1981).
  •   相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号