首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
The initiation reaction of the polymerization of α-methylstyrene by trityl tetrachloroferate and tritylhexachloroantimonate in 1,2-dichloroethane at 20°C was studied. The rate constants were 14 × 10?3 and 27 × 10?3 L mol?1s?1, respectively. The dissociation constants of tritylterachloroferate (Kd = 0.88 × 10?4M?1) and tritylhexachloroantimonate (Kd = 2.64 × 10?4M?1) was determined. The effect of electron acceptors and donors on the dissociation equilibrium and initiation rate was investigated. It was shown that in strongly dissociated ion pairs such as stable carbenium salts the electron donors and acceptors have no appreciable effect on the magnitude of the dissociation. The temperature dependence of the rate constants in the ?20–+20°C range yielded the following thermodynamic parameters for trityltetrachloroferate: Ei = 8.54 kcal/mol; A = 3.2 × 104 mol?1s?1; ΔH* = 8 kcal/mol; and S* = ?39.8 eu.  相似文献   

2.
The analysis of the activation parameters for the formal H‐atom transfer reaction between 2,2,5,7,8‐pentamethyl‐6‐chromanol (ChrOH) and 2,2‐diphenyl‐1‐picrylhydrazyl (dpph?) reveals that these parameters are effective probes of the actual reaction mechanism. Indeed, the A factors measured in various polar and apolar solvents are localized in three distinct domains according to whether the reaction occurs via outer‐sphere electron transfer (ET) from the anion ChrO? or hydrogen atom transfer (HAT). For instance, A = 5.9 × 105 M?1 s?1 and Ea = 2.5 kcal mol?1 in cyclohexane where the reaction proceeds by HAT, whereas in methanol, ethanol, and their mixtures with water where there is a substantial ET contribution A > 109 M?1s?1 and Ea > 7 kcal mol?1. Interestingly, in nonhydroxylic polar solvents, A~ 107 M?1s?1 and the Ea values reflect the H‐bond accepting ability of the solvent in agreement with the “standard” kinetic solvent effects on HAT reactions. Addition of small quantities of pyridine accelerates the reaction rates in these solvents. This suggests that the H‐bonded complex (ChrOH···Py) is able to react via intermolecular ET with dpph?. It is known, in fact, that pyridine lowers the oxidation potential of phenols by ~0.5 V and the ΔGET of ChrOH + dpph? consequently decreases by about 10 kcal mol?1. © 2012 Wiley Periodicals, Inc. Int J Chem Kinet 44: 524–531, 2012  相似文献   

3.
Reaction rates for the structural isomerization of 1,1,2,2‐tetramethylcyclopropane to 2,4‐dimethyl‐2‐pentene have been measured over a wide temperature range, 672–750 K in a static reactor and 1000–1120 K in a single‐pulse shock tube. The combined data from the two temperature regions give Arrhenius parameters Ea=64.7 (±0.5) kcal/mol and log10(A, s?1) = 15.47 (±0.13). These values lie at the upper end of the ranges of Ea and log A values (62.2–64.7 kcal/mol and 14.82–15.55, respectively) obtained from three previous experimental studies, each of which covered a narrower temperature range. The previously noted trend toward lower Ea values for structural isomerization of methylcyclopropanes as methyl substitution increases extends only through the dimethylcyclopropanes (1,1‐ and 1,2‐); Ea then appears to increase with further methyl substitution. In contrast, the pre‐exponential factors for isomerization of cyclopropane and all of the methylcyclopropanes through tetramethylcyclopropane lie within ±0.3 of log10(A, s?1) = 15.2 and show no particular trend with increasing substitution. © 2006 Wiley Periodicals, Inc. Int J Chem Kinet 38: 483–488, 2006  相似文献   

4.
The rate of demetallation of α, β, γ,δ-tetra(p-sulfophenyl)porphineiron (III), Fe(TPPS)3-, was determined in sulfuric acid-ethanol-water media for 8.5-10.65M sulfuric acid at different temperatures. The overall reaction was the conversion of the complex Fe(TPPS)3- into the diacid species H4TPPS2- without other spectrophotometrically important species being formed to an appreciable extent, as shown by three isosbestic points at 418, 462, and 563 nm. The rate was first order in the Fe(TPPS)3- concentration. The pseudo-first-order rate constants k were exponentially dependent on the sulfuric acid concentration, and log k was linearly dependent on the Hammett acidity function –H0. The average ΔH? and ΔS? values for five reaction media were 18.4 ± 1.4 kcal/mol and 19 ± 3 cal/°K · mol, respectively. The linear relationship between log k and (-H0) and the approximately constant values of ΔH? ΔS? over the acid range investigated indicated that the same mechanism of demetallation was operative over this acid range. Because of the dependence of the pseudo-first-order rate constants on the acidity of the medium, the mechanism probably involves the addition of protons to pyrrole N atoms to assist in the breaking of iron (III)-nitrogen bonds.  相似文献   

5.
Thermolysis of the “all-cis” compound 1α-chloro-2α,3α-dimethylcyclopropane (A) at 550–607 K and 6–115 torr is a first-order homogeneous non-radical-chain process giving penta-1,3-diene (PD) and HCl as products. The Arrhenius parameters are log10A(sec?1) = 13.92 ± 0.08 and E = 199.6 ± 0.9 kJ/mol. The isomer with trans-methyl groups, 1α-chloro-2α,3β-dimethylcyclopropane (B) reacts by two parallel first-order processes giving as observed products trans-4-chloropent-2-ene (4CP) and PD + HCl, with log10A(sec?1) = 14.6 and 13.8, respectively, and E = 199.5 and 190.2 kJ/mol, respectively. The 4CP undergoes secondary decomposition to PD + HCl (as investigated previously). Comparison of the results for compounds (A) and (B) with those for other gas-phase and solution reactions leads to the conclusion that the gas-phase thermolyses proceed by rate-determining ring opening to form olefins which may decompose further by thermal or chemically activated reactions, and that the ring opening is a semiionic electrocyclic reaction in which alkyl groups in the 2,3-positions trans to the migrating chlorine semianion move apart, with appropriate consequences for the rate of reaction and the stereochemistry of the products.  相似文献   

6.
The pyrolysis kinetics of primary, secondary, and tertiary β-hydroxy ketones have been studied in static seasoned vessels over the pressure range of 21–152 torr and the temperature range of 190°–260°C. These eliminations are homogeneous, unimolecular, and follow a first-order rate law. The rate coefficients are expressed by the following equations: for 1-hydroxy-3-butanone, log k1(s?1) = (12.18 ± 0.39) ? (150.0 ± 3.9) kJ mol?1 (2.303RT)?1; for 4-hydroxy-2-pentanone, log k1(s?1) = (11.64 ± 0.28) ? (142.1 ± 2.7) kJ mol?1 (2.303RT)?1; and for 4-hydroxy-4-methyl-2-pentanone, log k1(s?1) = (11.36 ± 0.52) ? (133.4 ± 4.9) kJ mol?1 (2.303RT)?1. The acid nature of the hydroxyl hydrogen is not determinant in rate enhancement, but important in assistance during elimination. However, methyl substitution at the hydroxyl carbon causes a small but significant increase in rates and, thus, appears to be the limiting factor in a retroaldol type of mechanism in these decompositions. © John Wiley & Sons, Inc.  相似文献   

7.
The kinetics of the reaction between CH3 and HCl was studied in a tubular reactor coupled to a photoionization mass spectrometer. Rate constants were measured as a function of temperature (296–495 K) and were fitted to an Arrhenius expression: k1 = 5.0(±0.7) × 10?13 exp{?1.4(±0.3) kcal mol?1/RT} cm3 molecule?1 s?1. This information was combined with known kinetic parameters of the reverse reaction to obtain Second Law determinations of the methyl radical heat of formation {34.7(±0.6) kcal mol?1} and entropy {46(±2) cal mol?1 K?1} at 298 K. Using the known entropy of CH3, a more accurate Third Law determination of the CH3 heat of formation at this temperature was also obtained {34.8(±0.3) kcal mol?1}. The values of k1 obtained in this study are between those reported in prior investigations. The results were also used to test the accuracy of the thermochemical information which can be obtained from kinetic studies of R + HX (X = Cl, Br, I) reactions of the type described here.  相似文献   

8.
The constant-volume combustion energy, △cU (DADE, s, 298.15 K), the thermal behavior, and kinetics and mechanism of the exothermic decomposition reaction of 1,1-diamino-2,2-dinitroethylene (DADE) have been investigated by a precise rotating bomb calorimeter, TG-DTG, DSC, rapid-scan fourier transform infrared (RSFT-IR) spectroscopy and T-jump/FTIR, respectively. The value of △cHm (DADE, s, 298.15 K) was determined as (-8518.09±4.59) j·g^-1. Its standard enthalpy of combustion, △cU (DADE, s, 298.15 K), and standard enthalpy of formation, △fHm (DADE, s, 298.15 K) were calculated to be (-1254.00±0.68) and (- 103.98±0.73) kJ·mol^-1, respectively The kinetic parameters (the apparent activation energy Ea and pre-exponential factor A) of the first exothermic decomposition reaction in a temperature-programmed mode obtained by Kissinger's method and Ozawa's method, were Ek=344.35 kJ·mol^-1, AR= 1034.50 S^-1 and Eo=335.32 kJ·mol^-1, respectively. The critical temperatures of thermal explosion of DADE were 206.98 and 207.08 ℃ by different methods. Information was obtained on its thermolysis detected by RSFT-IR and T-jump/FTIR.  相似文献   

9.
Rate constants for the gas-phase reactions of the biogenically emitted monoterpene β-phellandrene with OH and NO3 radicals and O3 have been measured at 297 ± 2 K and atmospheric pressure of air using relative rate methods. The rate constants obtained were (in cm3 molecule?1 s?1 units): for reaction with the OH radical, (1.68 ± 0.41) × 10?10; for reaction with the NO3 radical, (7.96 ± 2.82) × 10?12; and for reaction with O3, (4.77 ± 1.23) × 10?17, where the error limits include the estimated uncertainties in the reference reaction rate constants. Using these rate constants, the lifetime of β-phellandrene in the lower troposphere due to reaction with these species is calculated to be in the range of ca. 1–8 h, with the OH radical reaction being expected to dominate over the O3 reaction as a loss process for β-phellandrene during daylight hours.  相似文献   

10.
The rate law for the demetallation of the title indium(III)-porphin complex in aqueous acidic thiocyanate media at 3.00M ionic strength was found to be of the form where [H4P2?] is the concentration of the diacid product formed, [InP]t is the total concentration of all forms of indium(III)-porphin complex present, and a and b are constants. The constant a is a pseudo-third-order rate constant with the value (0.057 ± 0.005)M?2 s?1 and b has the value 0.704M?2 at 50.5°C. If the mechanism for demetallation involves ringpuckering with the attachment of two H+ ions, then 1/b can be identified with the product K1K2 for the stepwise dissociation of two protons from two ring pyrrolic nitrogen atoms of H2InP?. In the sulfonated tetraphenylporphin used for these studies the ring pyrrolic nitrogen atoms seem to be the most probable sites for protonation. If this identification is correct, the value of 1.42 ± 0.13 found for the product K1K2 shows the enormous effect that the presence of the In3+ center has on the ionization constants of these two protons. That the kinetic studies show saturation effects with respect to proton addition to InP3? may result from the fact that In3+ sits about 0.6 Å above the porphin ring.  相似文献   

11.
The kinetics and equilibrium of the gas-phase reaction of CH3CF2Br with I2 were studied spectrophotometrically from 581 to 662°K and determined to be consistent with the following mechanism: A least squares analysis of the kinetic data taken in the initial stages of reaction resulted in log k1 (M?1 · sec?1) = (11.0 ± 0.3) - (27.7 ± 0.8)/θ where θ = 2.303 RT kcal/mol. The error represents one standard deviation. The equilibrium data were subjected to a “third-law” analysis using entropies and heat capacities estimated from group additivity to derive ΔHr° (623°K) = 10.3 ± 0.2 kcal/mol and ΔHrr (298°K) = 10.2 ± 0.2 kcal/mol. The enthalpy change at 298°K was combined with relevant bond dissociation energies to yield DH°(CH3CF2 - Br) = 68.6 ± 1 kcal/mol which is in excellent agreement with the kinetic data assuming that E2 = 0 ± 1 kcal/mol, namely; DH°(CH3CF2 - Br) = 68.6 ± 1.3 kcal/mol. These data also lead to ΔHf°(CH3CF2Br, g, 298°K) = -119.7 ± 1.5 kcal/mol.  相似文献   

12.
A laser photolysis–long path laser absorption (LP‐LPLA) experiment has been used to determine the rate constants for H‐atom abstraction reactions of the dichloride radical anion (Cl2) in aqueous solution. From direct measurements of the decay of Cl2 in the presence of different reactants at pH = 4 and I = 0.1 M the following rate constants at T = 298 K were derived: methanol, (5.1 ± 0.3)·104 M−1 s−1; ethanol, (1.2 ± 0.2)·105 M−1 s−1; 1‐propanol, (1.01 ± 0.07)·105 M−1 s−1; 2‐propanol, (1.9 ± 0.3)·105 M−1 s−1; tert.‐butanol, (2.6 ± 0.5)·104 M−1 s−1; formaldehyde, (3.6 ± 0.5)·104 M−1 s−1; diethylether, (4.0 ± 0.2)·105 M−1 s−1; methyl‐tert.‐butylether, (7 ± 1)·104 M−1 s−1; tetrahydrofuran, (4.8 ± 0.6)·105 M−1 s−1; acetone, (1.41 ± 0.09)·103 M−1 s−1. For the reactions of Cl2 with formic acid and acetic acid rate constants of (8.0 ± 1.4)·104 M−1 s−1 (pH = 0, I = 1.1 M and T = 298 K) and (1.5 ± 0.8) · 103 M−1 s−1 (pH = 0.42, I = 0.48 M and T = 298 K), respectively, were derived. A correlation between the rate constants at T = 298 K for all oxygenated hydrocarbons and the bond dissociation energy (BDE) of the weakest C‐H‐bond of log k2nd = (32.9 ± 8.9) − (0.073 ± 0.022)·BDE/kJ mol−1 is derived. From temperature‐dependent measurements the following Arrhenius expressions were derived: k (Cl2 + HCOOH) = (2.00 ± 0.05)·1010·exp(−(4500 ± 200) K/T) M−1 s−1, Ea = (37 ± 2) kJ mol−1 k (Cl2 + CH3COOH) = (2.7 ± 0.5)·1010·exp(−(4900 ± 1300) K/T) M−1 s−1, Ea = (41 ± 11) kJ mol−1 k (Cl2 + CH3OH) = (5.1 ± 0.9)·1012·exp(−(5500 ± 1500) K/T) M−1 s−1, Ea = (46 ± 13) kJ mol−1 k (Cl2 + CH2(OH)2) = (7.9 ± 0.7)·1010·exp(−(4400 ± 700) K/T) M−1 s−1, Ea = (36 ± 5) kJ mol−1 Finally, in measurements at different ionic strengths (I) a decrease of the rate constant with increasing I has been observed in the reactions of Cl2 with methanol and hydrated formaldehyde. © 1999 John Wiley & Sons, Inc. Int J Chem Kinet 31: 169–181, 1999  相似文献   

13.
The following reactions: (1) were studied over the temperature ranges 533–687 K, 563–663 K, and 503–613 K for the forward reactions respectively and over 683–763 K, for the back reaction. Arrhenius parameters for chlorine atom transfer were determined relative to the combination of the attacking radicals. The ΔHr°(1) = ?3.95 ± 0.45 kcal mol?1 was calculated and from this value the ΔH∮(C2F5Cl) = ?2.66.3 ± 2.5 kcal mol?1 and D(C2F5-Cl) = 82.0 ± 1.2 kcal mol?1 were obtained. Besides, the ΔHr°(2) was estimated leading to D(CF2ClCF2Cl) = 79.2 ± 5 Kcal mol?1. The bond dissociation energies and the heat of formation are compared with those of the literature. The effect of the halogen substitutents as well as the importance of the polar effects for halogen transfer processes are discussed.  相似文献   

14.
This paper estimates some thermochemical (in kcal mol–1) and detonation parameters for the ionic liquid, [emim][ClO4] and its associated solid in view of its investigation as an energetic material. The thermochemical values estimated, employing CBS‐4M computational methodology and volume‐based thermodynamics (VBT) include: lattice energy, UPOT([emim][ClO4]) ≈? 123 ± 16 kcal · mol–1; enthalpy of formation of the gaseous cation, ΔfH°([emim]+, g) = 144.2 kcal · mol–1 and anion, ΔfH°([ClO4], g) = –66.1 kcal · mol–1; the enthalpy of formation of the solid salt, ΔfH°([emim][ClO4],s) ≈? –55 ± 16 kcal · mol–1 and for the associated ionic liquid, ΔfHo([emim][ClO4],l) = –52 ± 16 kcal · mol–1 as well as the corresponding Gibbs energy terms: ΔfG°([emim][ClO4],s) ≈? +29 ± 16 kcal · mol–1 and ΔfGo([emim][ClO4],l) = +24 ± 16 kcal · mol–1 and the associated standard absolute entropies, of the solid [emim][ClO4], S°298([emim][ClO4],s) = 83 ± 4 cal · K–1 · mol–1. The following combustion and detonation parameters are assigned to [emim][ClO4] in its (ionic) liquid form: specific impulse (Isp) = 228 s (monopropellant), detonation velocity (VoD) = 5466 m · s–1, detonation pressure (pC–J) = 99 kbar, explosion temperature (Tex) = 2842 K.  相似文献   

15.
Study of n-butane pyrolysis at high temperature in a flow system allows measurement of the sum of the rate constants of the initiation reactions and of the Arrhenius parameters of the reactions Established data for k1/k2 allow estimation of k1 for 951°K and this, with recent thermochemical data, yields the result log k?1 (l.mole s?1) = 8.5, in remarkable agreement with a recent measurement [20] but over si×ty times smaller than conventional assumption. The product k3k4 (l.2mole?2s?2) is found to be associated with the Arrhenius parameters log (A3A4) = 21.90 ± 0.6 and (E3 + E4) = 38.3 ± 2.7 kcal/mole. These values are much higher than would be e×pected on the basis of low temperature estimates. Independent evaluation gives log A4 = 10.5 ± 0.4 (l.mole?1s?1) and E4 = 20.1 ± 1.7 kcal/mole, hence log A3 = 11.4 ± 0.8 (l.mole?1s?1) and E3 = 18.2 ± 3.2 kcal/mole. These values are shown to be entirely consistent with a wide range of results from pyrolytic studies, and it is argued that they further confirm the view that Arrhenius plots for alkyl radical–alkane metathetical reactions are strongly curved, in part due to tunneling and, appreciably, to other as yet unidentified effects. Since there is published evidence that metathetical reactions involving hydrogen atoms show even greater curvature, it is suggested that this may be a characteristic of many metathetical reactions.  相似文献   

16.
Rate constants for the gas-phase reactions of NO3 radicals with a series of alkynes, haloalkenes, and α,β-unsaturated aldehydes have been determined at 298 ± 2 K using a relative rate technique. Using rate constants for the reactions of NO3 radicals with ethene and propene of (1.1 ± 0.5) × 10?16 cm3 molecule?1 s?1 and (7.5 ± 1.6) × 10?15 cm3 molecule?1 s?1, respectively, the following rate constants (in units of 10?16 cm3 molecule?1 s?1) were obtained: acetylene, ≤0.23; propyne, 0.94 ± 0.44; vinyl chloride, 2.3 ± 1.1; 1,1-dichloroethene, 6.6 ± 3.1; cis-1,2-dichloroethene, 0.75 ± 0.35; trans-1,2-dichloroethene, 0.57 ± 0.27; trichloroethene, 1.5 ± 0.7; tetrachloroethene, <0.4; allyl chloride, 2.9 ± 1.3; acrolein, 5.9 ± 2.8; and crotonaldehyde, 41 ± 9. The atmospheric implications of these data are discussed.  相似文献   

17.
The rate constant of the primary decomposition step was determined for four symmetrical and four unsymmetrical azoalkanes. From the experimental activation energies and some literature enthalpy data, the following enthalpies of formation of radicals and group contributions were calculated: ΔH? (CH3N2) = 51.5 ± 1.8 kcal mol?1, ΔH? (C2H5N2) = 44.8 ± 2.5 kcal mol?1, ΔH? (2?C3H7N2) = 37.9 ± 2.2 kcal mol?1, [NA-(C)] = 27.6 ± 3.7 kcal mol?1, [NA-(?A) (C)] = 61.2 ± 3.1 kcal mol?1.  相似文献   

18.
The gas‐phase elimination kinetics of the above‐mentioned compounds were determined in a static reaction system over the temperature range of 369–450.3°C and pressure range of 29–103.5 Torr. The reactions are homogeneous, unimolecular, and obey a first‐order rate law. The rate coefficients are given by the following Arrhenius expressions: ethyl 3‐(piperidin‐1‐yl) propionate, log k1(s?1) = (12.79 ± 0.16) ? (199.7 ± 2.0) kJ mol?1 (2.303 RT)?1; ethyl 1‐methylpiperidine‐3‐carboxylate, log k1(s?1) = (13.07 ± 0.12)–(212.8 ± 1.6) kJ mol?1 (2.303 RT)?1; ethyl piperidine‐3‐carboxylate, log k1(s?1) = (13.12 ± 0.13) ? (210.4 ± 1.7) kJ mol?1 (2.303 RT)?1; and 3‐piperidine carboxylic acid, log k1(s?1) = (14.24 ± 0.17) ? (234.4 ± 2.2) kJ mol?1 (2.303 RT)?1. The first step of decomposition of these esters is the formation of the corresponding carboxylic acids and ethylene through a concerted six‐membered cyclic transition state type of mechanism. The intermediate β‐amino acids decarboxylate as the α‐amino acids but in terms of a semipolar six‐membered cyclic transition state mechanism. © 2005 Wiley Periodicals, Inc. Int J Chem Kinet 38: 106–114, 2006  相似文献   

19.
The title compound has been synthesized by the reaction of α-dithionaphthoic acid with CuCl2 in pyridine or by recrystallizing Cu4(α-C10H7CSS2)4 ? 1/2CS2 in a mixture of pyridine and alcohol. The structure of the title compound is determined by a single-crystal X-ray diffraction analysis. The crystal belongs to triclinic space group with unit cell parameters: a=7.085(2)Å, b= 8.672(3)Å and c=13.598(5)Å; a=92.40(3)°, β=102.59(4)° and γ=105.67(4)°; V=780.6Å2; Z=1. The structure was refined to R=0.058 for 2390 reflections. The molecule of the title compound sits on a center of symmetry. The shorter Cu—Cu bond length (2.606Å) shows considerable interaction between copper atoms. If the Cu—Cu interaction is ignored, the neighbouring S and N atoms are coordinated to copper atom in a configuration of distorted tetrahedron.  相似文献   

20.
The gas-phase eliminations of several tert-butyl esters, in a static system and in vessels seasoned with allyl bromide, have been studied in the temperature range of 171.5–280.1°C and the pressure range of 23–98 torr. The rate coefficients for the homogeneous unimolecular elimination of these esters are given by the following Arrhenius equations: for tert-butyl pivalate, log k1(s?1) = (13.44 ± 0.30) ? (169.1 ± 3.1) kJ · mol?1 (2.303RT)?1; for tert-butyl trichloroacetate, log k1(s?1) = (12.41 ± 0.08) ? (141.1 ± 0.7) kJ · mol?1 (2.303RT)?1; and for tert-butyl cyanoacetate log k1(s?1) = (11.31 ± 0.44) ? (137.8 ± 4.1) kJ · mol?1 (2.303RT)?1. The data of this work together with those reported in the literature yield a good linear relationship when plotting log k/k0 vs. σ* values (ρ* = 0.635, correlation coefficient r = 0.972, and intercept = 0.048 at 250°C). The positive ρ* value suggests that the movement of negative charge to the acyl carbon in the transition state is rate determining. The present results along with previous investigations ratify the generalization that electron-withdrawing substituents at the acyl side of ethyl, isopropyl, and tert-butyl esters enhance the elimination rates, while electron-releasing groups tend to reduce them. The negative nature of the acyl carbon and the polarity in the transition state increases slightly from primary to tertiary esters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号