首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
The cyclization of neutral primary pent-4-enylaminyl radicals was investigated experimentally and theoretically. Unlike the corresponding secondary aminyl radicals, primary pent-4-enylaminyl radicals underwent efficient cyclization to afford the pyrrolidine and/or piperidine products in good to high yields. While the simple pent-4-enylaminyl radical gave predominately the 5-exo cyclization product, 4-chloropent-4-enylaminyl radicals led to the formation of the corresponding 6-endo cyclization products in excellent regioselectivity. Theoretical calculations revealed that the 5-exo cyclization rate of primary aminyl radicals is about 3-4 orders of magnitude higher than that of secondary aminyl radicals.  相似文献   

2.
α-Chiral aminyl radicals have been generated from sulfenamides of α-amino acid esters and α-phenylethylamine using Bu3SnH. The aminyl radicals of α-amino acid esters undergo 5-exo-trig cyclisation reactions onto side chain alkenes to yield proline analogues with reasonable diastereoselectivity. Preliminary studies show urethanyl radicals generated from sulfenamides of alkenyl urethane derivatives of α-amino acid esters and α-phenylethylamine undergo 5-exo-rig cyclisations to providing a protocol for the radical amination of unactivated alkenes. The α-ester of the amino acid or the urethane groups impart electrophilic behaviour to the aminyl radicals and facilitates cyclisation onto alkenes.  相似文献   

3.
《Tetrahedron: Asymmetry》1999,10(21):4091-4094
The diastereoselective intramolecular cyclization of cationic aminyl radicals into the corresponding pyrrolidines has been investigated. The selectivities obtained are good to excellent.  相似文献   

4.
Most aminyl radicals studied so far are resonance-stabilized by neighboring heteroatoms, and those without such stabilization are usually short-lived. We report herein that subporphyrin meso-2,4,6-trichlorophenylaminyl radicals and a bis(5-subporphyrinyl)aminyl radical are fairly stable under ambient conditions without such stabilization. The subporphyrin meso-2,4,6-trichlorophenylaminyl radical crystal structure displays a characteristically short Cmeso−N bond and a perpendicular arrangement of the meso-arylamino group. The stabilities of these radicals have been ascribed to extensive spin delocalization over the subporphyrin π-electronic network as well as steric protection around the aminyl radical center.  相似文献   

5.
A variety of substituted 2'-deoxyadenosin-5'-yl radicals 3 were generated under different reaction conditions. Radicals 3 underwent intramolecular cyclization onto the C8-N7 double bond of the adenine moiety leading to aminyl radicals (5'S,8R)-4 and (5'R,8R)-4 and, eventually, to the corresponding cyclonucleosides 5 and 6. The effect of the solvent, the nature of the substituents, and the generation method of radicals 3 on the stereoselectivity of the C5'-radical cyclization have been considered. The observed increase of the (5'S)/(5'R) ratio by increasing the bulkiness of the R1 group is explained in terms of steric repulsion between R1 and the purine moiety which favors the C5'-endo conformation, whereas the effect of the water solvent in promoting the (5'R)-stereoselective cyclization is ascribed to intermolecular hydrogen bonding stabilizing the C5'-exo conformation.  相似文献   

6.
Most aminyl radicals studied so far are resonance‐stabilized by neighboring heteroatoms, and those without such stabilization are usually short‐lived. We report herein that subporphyrin meso ‐2,4,6‐trichlorophenylaminyl radicals and a bis(5‐subporphyrinyl)aminyl radical are fairly stable under ambient conditions without such stabilization. The subporphyrin meso ‐2,4,6‐trichlorophenylaminyl radical crystal structure displays a characteristically short Cmeso −N bond and a perpendicular arrangement of the meso ‐arylamino group. The stabilities of these radicals have been ascribed to extensive spin delocalization over the subporphyrin π‐electronic network as well as steric protection around the aminyl radical center.  相似文献   

7.
Herein, we report a strategy for the generation of nitrogen‐radicals by ground‐state single electron transfer with organyl–NiI species. Depending on the philicity of the N‐radical, two types of processes have been developed. In the case of nucleophilic aminyl radicals direct N‐arylation with aryl organozinc, organoboron, and organosilicon reagents was achieved. In the case of electrophilic amidyl radicals, cascade processes involving intramolecular cyclization, followed by reaction with both aryl and alkyl organometallics have been developed. The N‐cyclization–alkylation cascade introduces a novel retrosynthetic disconnection for the assembly of substituted lactams and pyrrolidines with its potential demonstrated in the short total synthesis of four venom alkaloids.  相似文献   

8.
Chemical modification of poly(lactic acid) (PLA) with N‐acetoxy‐phthalimide (NAPI) was performed in the melt by reactive extrusion, without using any peroxide initiator. The aminyl and nitroxide radicals produced from the NAPI thermal degradation, were, respectively, used (a) to create PLA macroradicals, and (b) to functionalize the PLA samples through nitroxide radical coupling. Depending on the extrusion temperature and the initial NAPI concentration, grafting rates up to 0.24 mol % were measured, modifying the PLA optical properties. This study represents an original new way of modification of PLA without the use of conventional peroxide initiators. Indeed, the undesirable side reactions (PLA branching or crosslinking) usually observed when using peroxides to initiate the radical grafting of PLA were avoided when using NAPI. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 120–129  相似文献   

9.
The reaction of hydrated electrons (e(aq)(-)) with 8-bromo-2'-deoxyadenosine has been investigated by radiolytic methods coupled with product studies and addressed computationally by means of DFT-B3LYP calculations. Pulse radiolysis revealed that this reaction was complete in approximately 0.3 mus, and, at this time, no significant absorption was detected. The spectrum of a transient developed in 20 mus has an absorbance in the range 300-500 nm (epsilon(max) congruent with 9600 M(-1) cm(-1) at 360 nm), and it was assigned to aromatic aminyl radical 3. Computed vertical transitions (TD-UB3LYP/6-311+G) are in good agreement with the experimental observations. Radical 3 is obtained by the following reaction sequence: one-electron reductive cleavage of the C-Br bond that gives the C8 radical, a fast radical translocation from the C8 to C5' position, and an intramolecular attack of the C5' radical at the C8,N7 double bond of the adenine moiety. The rate constant for the cyclization is 1.6 x 10(5) s(-1). On the basis of the theoretical findings, the cyclization step is highly stereospecific. The rate constants for the reactions of C5' and aminyl 3 radicals with different oxidants were determined by pulse radiolysis methods. The respective rate constants for the reaction of 2'-deoxyadenosin-5'-yl radical with dioxygen, Fe(CN)(6)(3)(-), and MV(2+) in water at ambient temperature are 1.9 x 10(9), 4.2 x 10(9), and 2.2 x 10(8) M(-1) s(-1). The value for the reaction of aminyl radical 3 with Fe(CN)(6)(3-) is 8.3 x 10(8) M(-1) s(-1), whereas the reaction with dioxygen is reversible. Tailored experiments allowed the reaction mechanism to be defined in some detail. A synthetically useful radical cascade process has also been developed that allows in a one-pot procedure the conversion of 8-bromo-2'-deoxyadenosine to 5',8-cyclo-2'-deoxyadenosine in a diastereoisomeric ratio (5'R):(5'S) = 6:1 and in high yield, by reaction with hydrated electrons in the presence of K(4)Fe(CN)(6).  相似文献   

10.
[reaction: see text] Stannylaminyl radicals derived from radical reactions of Bu(3)SnH with azidoalkylmalononitriles exhibit highly efficient 5- and 6-exo cyclization onto either nitrile group to give aminoiminyl radicals that in turn are reduced to amidines or undergo successive 5-exo cyclization onto an internal alkene.  相似文献   

11.
Neutral aminyl radicals generated by anodic oxidation of lithium alkenylamides 2 undergo a stereoselective cyclization to give cis-1-methyl-2,5-disubstituted pyrrolidines 4. Their cis stereochemistry was confirmed by a comparison with trans-1,2-dimethyl-5-phenylpyrrolidine, the structure of which was established by X-ray crystallographic analysis of its quarternary ammonium bromide 6.  相似文献   

12.
The 4‐exo cyclizations of two types of carbamoyl radicals onto O‐alkyloxime acceptor groups were studied as potential routes to 3‐amino‐substituted azetidinones and hence to penicillins. A general synthetic route to ‘benzaldehyde oxime oxalate amides’ (= 2‐[(benzylideneamino)oxy]‐2‐oxoacetamides; see, e.g., 10c ) of 2‐{[(benzyloxy)imino]methyl}‐substituted thiazolidine‐4‐carboxylic acid methyl esters 9 was developed (Scheme 3). It was shown by EPR spectroscopy that these compounds underwent sensitized photodissociation to the corresponding carbamoyl radicals but that these did not ring close. An analogous open‐chain precursor, benzaldehyde O‐(benzylaminoacetaldehyde‐O‐benzyloxalyl)oxime, 15 , lacking the 5‐membered thiazolidine ring, was shown by EPR spectroscopy to release the corresponding carbamoyl radical (Scheme 4). The latter underwent 4‐exo cyclization onto its C?NOBn bond in non‐H‐atom donor solvents. The rate constant for this cyclization was determined by the steady‐state EPR method. Spectroscopic evidence indicated that the reverse ring‐opening process was slower than cyclization.  相似文献   

13.
The conventional tandem cyclization reactions involve the formation of alternating carbon-carbon bonds, whereas the newly developed cyclization reactions involve the formation of consecutive carbon-carbon bonds, in which N-aziridinylimines have been utilized as geminal radical acceptor and donor equivalents in a single operation. This unprecedented tandem cyclization approach becomes feasible by the successful generation of 5- and 6-membered ring radicals by radical cyclizations of N-aziridinylimines. The same notion can be applied to the anionic cyclizations of N-aziridinylimines, thereby allowing anionic consecutive carbon-carbon bond formation. This approach has great synthetic potential, particularly for the construction of quaternary carbon centers, and it provides highly efficient routes for the synthesis of natural products.  相似文献   

14.
The synthesis of various new 1-aminated-2,5-cyclohexadienes is described. These reagents can be used in radical transfer hydroaminations of unactivated and electron-rich double bonds. With thiols as polarity reversal catalysts good yields are obtained. The radical hydroamination occurs with good to excellent anti-Markovnikov selectivity. Many functional groups such as alcohols, silyl ethers, phosphonates, arylbromides, imides, amides, and also acidic protons are tolerated under the reaction conditions. DFT calculations provide insights into the aromatization of silyl, alkyl, and aminyl substituted cyclohexadienyl radicals to generate the corresponding C-, Si-, and N-centered radicals.  相似文献   

15.
A new, highly efficient Lewis base catalyst for a practical enantio‐ and diastereoselective crotylation of unsaturated aldehydes with E‐ and Z‐crotyltrichlorosilanes has been developed. The method was employed as a key step in a novel asymmetric synthesis of bioactive serrulatane diterpene (?)‐elisabethadione. Other strategic reactions for setting up the stereogenic centers included anionic oxy‐Cope rearrangement and cationic cyclization. The synthetic route relies on simple, high yielding reactions and avoids use of protecting groups or chiral auxiliaries.  相似文献   

16.
The reactions of a series of epoxynitriles and epoxyketones induced by titanocene chloride have been studied. The kinetics of the decyanogenation of beta,gamma-epoxynitriles with Ti(III) corresponds to a radical reaction (k25 approximately 106 s-1), as demonstrated by competition experiments with H-transfer from 1,4-cyclohexadiene (1,4-CHD) or PhSH or conjugate addition to acrylonitrile. The 5-exo cyclization onto nitrile induced by Ti(III) is a radical reaction (k25 approximately 107 s-1) as seen in competition experiments with H-transfer from PhSH or the titanocene-water complex. The iminyl or alkoxyl radicals generated by 5-exo cyclization onto nitriles or ketones only undergo a reduction with Ti(III). This reaction overwhelms any alternative process, such as tandem cyclization onto alkenes or beta-scission. Iminyl radicals generated by 4-exo cyclizations onto nitriles undergo reduction with Ti(III) and beta-scission reaction in a ratio of 96:4 when the alpha-substituent is CN. Alkoxyl radicals from 4-exo cyclizations onto ketone carbonyls undergo reduction with Ti(III) and beta-scission in a ratio of 60:40 when the alpha-substituent is COOR. In nearly all the reactions studied, the role of Ti(III) is triple: a radical initiator (homolytic cleavage of oxirane), a Lewis acid (coordination to CN or C=O), and a terminator (reduction of iminyl or alkoxyl radicals).  相似文献   

17.
Kosuke Takeuchi 《Tetrahedron》2007,63(45):11101-11107
A radical cascade involving 6-endo cyclization of aryl radicals generated from N-acryloyl-N-(1-methylethenyl)-9-bromophenanthren-10-ylmethylamines, followed by 5-endo-trig cyclization of the resulting α-amidoyl radicals afforded phenanthroindolizidines bearing a methyl substituent at the angular C13a position. 2,3,6-Trimethoxy derivative was synthesized by using this method, but its spectral data were not in accord with those of literature values reported for hypoestestatin 1. Further synthetic study toward hypoestestatin 1 is demonstrated.  相似文献   

18.
In the past few years, there has been a certain interest in nitrogen-centered radicals, biologically important radicals that play a vital role in various processes and constitute many important biological molecules. In this paper, there was an attempt to bridge a gap in the literature that concerns the antiradical potency of monoamine neurotransmitters (dopamine, epinephrine, and norepinephrine) and their metabolites towards these radicals. The most probable radical quenching mechanism was determined for each radical out of three common mechanisms, namely Hydrogen Atom Transfer (HAT), Single Electron Transfer followed by the Proton Transfer (SET-PT), and Sequential Proton Loss Electron Transfer (SPLET). Marcus’ theory was then used to determine the reaction rates for the electron transfer process. SPLET was the most probable mechanism for both reactions with the aminyl and hydrazyl radicals, while HAT and SPLET were plausible mechanisms for reactions with the imidazolyl radical. Special emphasis was put on the investigation of the substituent effect on the preferred mechanism. The necessity of both thermodynamic and kinetic parameters for the comparison of the antiradical potency of compounds was discussed. The same methodology was applied for the theoretical investigation of the reactivity towards DPPH, a member of the hydrazyl radicals. An ecotoxicity analysis was performed to assess the impact the investigated radicals have on the ecosystem. Except for histidine, every other neutral form was either toxic or highly toxic to some of the analyzed marine organisms.  相似文献   

19.
A combination of 2-aryl substituted 1,3-dimethyl-benzimidazolines (DMBIHs) and tris(2,2′-bipyridine)ruthenium(II) chloride, Ru(bpy)3Cl2 was used to promote photoinduced electron-transfer (PET) reactions of α-halomethyl-substituted benzocyclic 1-alkanones. This photo-reagent system stimulates free radical forming, cleavage of both carbon–bromine and carbon–chlorine bonds that are not activated by carbonyl groups. The resulting free radicals undergo 5-exo hexenyl cyclization as well as sequential cyclization and ring-expansion (Dowd–Beckwith) reactions to form radicals that abstract hydrogen atoms from the radical cation of DMBIH to yield the observed products. The results of a study of the effects of substituents located on the 2-aryl ring of DMBIH suggest that steric and hydrogen-bonding interactions influence the nature of the reaction pathways followed by the radical intermediates. PET reactions using an iridium complex and DMBIH were also investigated.  相似文献   

20.
β‐(3‐Iodopropoxy)‐substituted α,β‐unsaturated lactams, lactones, and cycloalkenones (eight examples) underwent reductive radical reactions in a dichloromethane solution of N,N‐diisopropylethylamine (Hünig's base) upon irradiation with visible light (λ=419 nm). Apart from plain reduction reactions (hydro‐de‐iodination), a significant degree of cyclization was observed in three cases. In parallel to the conversion of the substrates, the formation of intensely colored by‐products was observed. Based on mass spectrometric evidence and upon comparison with known compounds, the by‐products were identified as cyanine dyes. Their formation supports the hypothesis that irradiation of dichloromethane solutions of Hünig's base leads to the formation of radicals, which in turn can either initiate a radical reaction or combine with cyanine precursors. It was shown by deuterium‐labelling experiments, that one equivalent of dichloromethane is incorporated into the cyanine dyes and that the reductive quenching of radical intermediates is at least partially due to hydrogen abstraction from the solvent. As a consequence, a reductive cyclization of the starting materials is favored in CD2Cl2 solutions as shown for two β‐(3‐iodopropoxy)‐substituted tetronates, which underwent in dichloromethane almost exclusive reduction, but gave predominantly the cyclization products in CD2Cl2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号