首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Symmetry breaking is observed in the Soai reaction in a confinement environment provided by zirconium-based UiO-MOFs used as crystalline sponges. Subsequent reaction of encapsulated Soai aldehyde with Zn(i-Pr)2 vapour promoted absolute asymmetric synthesis of the corresponding alkanol. ATR-IR and NMR confirm integration of aldehyde into the porous material, and a similar localization of newly formed chiral alkanol after reaction. Despite the confinement, the Soai reaction exhibits significant activity and autocatalytic amplification. Comparative catalytic studies with various UiO-MOFs indicate different outcomes in terms of enantiomeric excess, handedness distribution of the product and reaction rate, when compared to pristine solid Soai aldehyde, while the crystalline MOF remains highly stable to action of Zn(iPr)2 vapour. This is an unprecedented example of absolute asymmetric synthesis using MOFs.  相似文献   

2.
分析了由于化学反应-扩散-热传导耦合而导致的非等温非均匀体系中温度场对称破缺.研究结果表明,在一定的边界条件下,甚至是单组分化学反应-扩散-热传导体系,温度场的这种自组织进程也不可避免.作为温度场结构的一个范例,进一步从解析解及计算机模拟两个方面研究了小展布非等温的Lindeman模型;结果表明,温度场出现时空自组织的阈值不仅与本征参数有关,而且与体系的边界条件及外控约束相关,揭示出了诱发或避免这种温度场时空自组织之途径.  相似文献   

3.
Effects of deviation from the Born–Oppenheimer approximation (BOA) on the non-adiabatic transition probability for the transfer of a quantum particle in condensed media are studied within an exactly solvable model. The particle and the medium are modeled by a set of harmonic oscillators. The dynamic interaction of the particle with a single local mode is treated explicitly without the use of BOA. Two particular situations (symmetric and non-symmetric systems) are considered. It is shown that the difference between the exact solution and the true BOA is negligibly small at realistic parameters of the model. However, the exact results differ considerably from those of the crude Condon approximation (CCA) which is usually considered in the literature as a reference point for BOA (Marcus–Hush–Dogonadze formula). It is shown that the exact rate constant can be smaller (symmetric system) or larger (non-symmetric one) than that obtained in CCA. The non-Condon effects are also studied.  相似文献   

4.
Radical anions are reactive intermediates in a variety of organic reactions. They make possible several unique synthetic conversions and provide an opportunity for investigating structural relationships. Examples of such reactions are given and current mechanistic views are discussed.  相似文献   

5.
The radiative decay of over a hundred open-shell organic radical cations has now been established. As a result, the spectral structure of such cations in their ground and excited electronic states can be probed with resolutions of the order of ? 1 cm?1. This is achieved by means of emission and laser-induced fluorescence techniques. The analysis of the emission and excitation spectra provides the vibrational frequencies of many of the totally symmetric fundamentals of the cations in the two electronic states. In order to study the relaxation behavior of these cations under “isolated conditions”, the lifetimes and fluorescence quantum fields can be obtained by means of photoelectron-photon coincidence measurements. These data yield the radiative and non-radiative rate constants as a function of the internal energy of the cations. The structural and decay information obtained from each of these techniques is illustrated using the 1,3-pentadiyne radical cation as example.  相似文献   

6.
Control of symmetry breaking of materials provides large opportunities to regulate their properties and functions. Herein, we report breaking the symmetry of layered dipeptide crystals by utilizing CO2 to induce the adjacent monomolecular layers to stack from the opposite to the same direction. The role of CO2 is to cover the interlayer interaction sites and force the dipeptides to adsorb at asymmetric positions. Further, the dipeptide crystals exhibit far superior piezoelectricity after symmetry breaking and the piezoelectric voltage generated from the dipeptide-based generators becomes more than 500 % higher than before. This work reveals a potential route to engineer structures and properties of layered materials and provides a deep insight into the control of non-covalent interactions.  相似文献   

7.
8.
9.
Cyclic radical cations Met-(S…︁█ + N) of methionine could play an important role in processes such as long-range electron transfer across cell membranes and oxidative damage to cells. CIDNP spectroscopy (CIDNP = chemically induced dynamic nuclear polarization) furnishes direct structural proof and allows experimental investigation of the spin-density distribution in the two-center three-electron bonds.  相似文献   

10.
The divinyldiarsene radical cations [{(NHC)C(Ph)}As]2(GaCl4) (NHC=IPr: C{(NDipp)CH}2 3 ; SIPr: C{(NDipp)CH2}2 4 ; Dipp=2,6‐iPr2C6H3) and dications [{(NHC)C(Ph)}As]2(GaCl4)2 (NHC=IPr 5 ; SIPr 6 ) are readily accessible as crystalline solids on sequential one‐electron oxidation of the corresponding divinyldiarsenes [{(NHC)C(Ph)}As]2 (NHC=IPr 1 ; SIPr 2 ) with GaCl3. Compounds 3 – 6 have been characterized by X‐ray diffraction, cyclic voltammetry, EPR/NMR spectroscopy, and UV/vis absorption spectroscopy as well as DFT calculations. The sequential removal of one electron from the HOMO, that is mainly the As?As π‐bond, of 1 and 2 leads to successive elongation of the As=As bond and contraction of the C?As bonds from 1 / 2 → 3 / 4 → 5 / 6 . The UV/vis spectrum of 3 and 4 each exhibits a strong absorption in the visible region associated with SOMO‐related transitions. The EPR spectrum of 3 and 4 each shows a broadened septet owing to coupling of the unpaired electron with two 75As (I=3/2) nuclei.  相似文献   

11.
Dynamic enantioselective crystallization enabled the chiral symmetry breaking of two spiropyrans and one spirooxazine. The three spiro compounds afforded racemic conglomerate crystals, and easily racemized in alcoholic solution without irradiation. Optically pure enantiomorphic crystals were obtained by vapor-diffusion crystallization or attrition-enhanced deracemization (Viedma ripening). Their absolute configurations were determined by single-crystal X-ray analysis and each enantiomorphic crystal was correlated with its solid-state circular dichroism (CD) spectrum.  相似文献   

12.
The aldol reaction between acetone and 4‐nitrobenzaldehyde run in the nominal absence of any enantioselective catalyst was monitored by chiral HPLC with the aid of an internal standard. The collected data show the presence of a detectable initial enantiomeric excess of the aldol product in the early stages of the reaction in about 50 % of the experiments. Only a small fraction of the reaction contained the non‐racemic aldol product after 24 h. This temporary emergence of natural optical activity could be the signature of a coupled reaction network that leads to a spontaneous mirror‐symmetry‐breaking process, which originates at very low conversions (i.e., strongly depends on events taking place at the very first stages of the process). The reaction is not autocatalytic in the aldol product, which rules out a simple Frank‐type reaction network as the source of the observed symmetry breaking. On the other hand, the isolation and characterisation of a double‐aldol adduct suggested a reaction network that involved both indirect autocatalysis and indirect mutual inhibition between the enantiomers of the reaction product.  相似文献   

13.
Herein we describe the self-assembly of an achiral molecule into macroscopic helicity as well as the emergent chiral-selective spin-filtering effect. It was found that a benzene-1,3,5-tricarboxamide (BTA) motif with an aminopyridine group in each arm could coordinate with AgI and self-assemble into nanospheres. Upon sonication, symmetry breaking occurred and the nanospheres transferred into helical nanofibers with strong CD signals. Although the sign of the CD signals appeared randomly, it could be controlled by using the as-made chiral assemblies as a seed. Furthermore, it was found that the charge transport of the helical nanofibers was highly selective with a spin-polarization transport of up to 45 %, although the chiral nanofibers are composed exclusively from achiral building blocks. This work demonstrates symmetry breaking under sonication and the chiral-selective spin-filtering effect.  相似文献   

14.
Mirror symmetry breaking in systems composed of achiral molecules is of importance for the design of functional materials for technological applications as well as for the understanding of the mechanisms of spontaneous emergence of chirality. Herein, we report the design and molecular self-assembly of two series of rod-like achiral polycatenar molecules derived from a π-conjugated 5,5’-diphenyl-2,2’-bithiophene core with a fork-like triple alkoxylated end and a variable single alkylthio chain at the other end. In both series of liquid crystalline materials, differing in the chain length at the trialkoxylated end, helical self-assembly of the π-conjugated rods in networks occurs, leading to wide temperature ranges (>200 K) of bicontinuous cubic network phases, in some cases being stable even around ambient temperatures. The achiral bicontinuous cubic Ia d phase (gyroid) is replaced upon alkylthio chain elongation by a spontaneous mirror symmetry broken bicontinuous cubic phase (I23) and a chiral isotropic liquid phase (Iso1[*]). Further chain elongation results in removing the I23 phase and the re-appearance of the Ia d phase with different pitch lengths. In the second series an additional tetragonal phase separates the two cubic phase types.  相似文献   

15.
The first vertical ionization potentials of isostructural P(III) and As(III) compounds EX3 (E = P, As) whose highest occupied molecular orbital is preferentially localized on the lone electron pairs of atom E depend on the inductive, resonance, and polarization effects of substituents X. Hyperconjugation in fragments like As+ ·-C-H is the only resonance effect in radical cations As+ ·X3. The same effect in similar P-centered radical cations is weaker.  相似文献   

16.
The first ionization potentials of molecules XZY and 1,4-XC6H4ZR (X, Y are inorganic, organo- metallic, or organic substituents; Z = S, Se), as well as the energies of charge-transfer bands in the electronic spectra of tetracyanoethylene complexes of these molecules are determined by the inductive, resonance, and polarization effects of substituents X and Y. Z-Centered radical cations formed both from individual molecules in the gas phase and from those incorporated in tight radical ion pairs in solutions are closely allied in their electronic structure. The resonance parameters + R of organosilicon, organogermanium, and organotin substituents bound to the radical cation center Z+· were determined.  相似文献   

17.
Upon photoexcitation, a majority of quadrupolar dyes, developed for large two-photon absorption, undergo excited-state symmetry breaking (ES-SB) and behave as dipolar molecules. We investigate how the change of quadrupole moment upon S1←S0 excitation, ΔQ, influences the propensity of a dye to undergo ES-SB using a series of molecules with a A -π- D -π- A motif where D is the exceptionally electron-rich pyrrolo[3,2-b]pyrrole and A are accepting groups. Tuning of ΔQ is achieved by appending a secondary acceptor group, A’ , on both sides of the D core and ES-SB is monitored using a combination of time-resolved IR and broadband fluorescence spectroscopy. The results reveal a clear correlation between ΔQ and the tendency to undergo ES-SB. When A is a stronger acceptor than A’ , ES-SB occurs already in non-dipolar but quadrupolar solvents. When A and A’ are identical, ES-SB is only partial even in highly dipolar solvents. When A is a weaker acceptor than A’ , the orientation of ΔQ changes, ES-SB is observed in dipolar solvents only and involves major redistribution of the excitation over the D -π- A and D-A’ branches of the dye.  相似文献   

18.
Spontaneous mirror symmetry breaking is an efficient way to obtain homogeneously chiral agents, pharmaceutical ingredients and materials. It is also in the focus of the discussion around the emergence of uniform chirality in biological systems. Tremendous progress has been made by symmetry breaking during crystallisation from supercooled melts or supersaturates solutions and by self‐assembly on solid surfaces and in other highly ordered structures. However, recent observations of spontaneous mirror symmetry breaking in liquids and liquid crystals indicate that it is not limited to the well‐ordered solid state. Herein, progress in the understanding of a new dynamic mode of symmetry breaking, based on chirality synchronisation of transiently chiral molecules in isotropic liquids and in bicontinuous cubic, columnar, smectic and nematic liquid crystalline phases is discussed. This process leads to spontaneous deracemisation in the liquid state under thermodynamic control, giving rise to long‐term stable symmetry‐broken fluids, even at high temperatures. These fluids form conglomerates that are capable of extraordinary strong chirality amplification, eventually leading to homochirality and providing a new view on the discussion of emergence of uniform chirality in prebiotic systems.  相似文献   

19.
《化学:亚洲杂志》2017,12(14):1736-1748
Five centrosymmetric and one dipolar pyrrolo[3,2‐b ]pyrroles, possessing either two or one strongly electron‐withdrawing nitro group have been synthesized in a straightforward manner from simple building blocks. For the symmetric compounds, the nitroaryl groups induced spontaneous breaking of inversion symmetry in the excited state, thereby leading to large solvatofluorochromism. To study the origin of this effect, the series employed peripheral structural motifs that control the degree of conjugation via altering of dihedral angle between the 4‐nitrophenyl moiety and the electron‐rich core. We observed that for compounds with a larger dihedral angle, the fluorescence quantum yield decreased quickly when exposed to even moderately polar solvents. Reducing the dihedral angle (i.e., placing the nitrobenzene moiety in the same plane as the rest of the molecule) moderated the dependence on solvent polarity so that the dye exhibited significant emission, even in THF. To investigate at what stage the symmetry breaking occurs, we measured two‐photon absorption (2PA) spectra and 2PA cross‐sections (σ2PA) for all six compounds. The 2PA transition profile of the dipolar pyrrolo[3,2‐b ]pyrrole, followed the corresponding one‐photon absorption (1PA) spectrum, which provided an estimate of the change of the permanent electric dipole upon transition, ≈18 D. The nominally symmetric compounds displayed an allowed 2PA transition in the wavelength range of 700–900 nm. The expansion via a triple bond resulted in the largest peak value, σ2PA=770 GM, whereas altering the dihedral angle had no effect other than reducing the peak value two‐ or even three‐fold. In the S 0S 1 transition region, the symmetric structures also showed a partial overlap between 2PA and 1PA transitions in the long‐wavelength wing of the band, from which a tentative, relatively small dipole moment change, 2–7 D, was deduced, thus suggesting that some small symmetry breaking may be possible in the ground state, even before major symmetry breaking occurs in the excited state.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号