首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The C? H proton NMR spectra of the twenty conceivable methyl and ethyl substituted hydrazines are presented and analyzed with respect to effects on chemical shifts of the C? H protons caused by replacement of hydrogen by methyl and ethyl groups on the C? N? N? C chain. Thirteen different methyl substituent effects and six different ethyl substituent effects are identified and evaluated. Most of the effects are shielding and in accordance with an electron-releasing inductive effect of alkyl groups. A deshielding effect (the ‘C? C bond effect’) is observed when a methyl group replaces the hydrogen on the carbon bearing the hydrogen in focus and primary hydrogen on the carbon bearing the hydrogen in focus and primary hydrogens become secondary, as observed in other systems. On the basis of their effects on the chemical shifts of methyl protons in CH3X, eighteen different hydrazyl groups (× = ? NR1NR2R3) fall into three classes: I (R1 = H; R2, R3 = H or alkyl); II (R1 = alkyl; R2 and/or R3 = H); III (R1, R2 and R3 = alkyl), with slightly different electronegativities: 2·94, 2·83 and 2·74, respectively.  相似文献   

2.
Molecules of phthal­imide [1H‐iso­indole‐1,3(2H)‐dione], C8H5NO2, are linked by N—H?O hydrogen bonds [H?O 2.02 Å, N?O 2.8781 (16) Å and N—H?O 167°] and by C—H?O hydrogen bonds [H?O 2.54 and 2.56 Å, C?O 3.3874 (18) and 3.4628 (19) Å, and C—H?O 149 and 159°] into molecular ribbons, which are pierced by three different ring motifs; there are two centrosymmetric R(8) rings, each containing a single hydrogen bond, N—H?O in one case and C—H?O in the other, and R(9) rings containing all three hydrogen bonds.  相似文献   

3.
Thermochemical properties for reactants, intermediates, products, and transition states important in the ketene (CH2?C?O) + H reaction system and unimolecular reactions of the stabilized formyl methyl (C·H2CHO) and the acetyl radicals (CH3C·O) were analyzed with density functional and ab initio calculations. Enthalpies of formation (ΔHf°298) were determined using isodesmic reaction analysis at the CBS‐QCI/APNO and the CBSQ levels. Entropies (S°298) and heat capacities (Cp°(T)) were determined using geometric parameters and vibrational frequencies obtained at the HF/6‐311G(d,p) level of theory. Internal rotor contributions were included in the S and Cp(T) values. A hydrogen atom can add to the CH2‐group of the ketene to form the acetyl radical, CH3C·O (Ea = 2.49 in CBS‐QCI/APNO, units: kcal/mol). The acetyl radical can undergo β‐scission back to reactants, CH2?C?O + H (Ea = 45.97), isomerize via hydrogen shift (Ea = 46.35) to form the slight higher energy, formyl methyl radical, C·H2CHO, or decompose to CH3 + CO (Ea = 17.33). The hydrogen atom also can add to the carbonyl group to form C·H2CHO (Ea = 6.72). This formyl methyl radical can undergo β scission back to reactants, CH2?C?O + H (Ea = 43.85), or isomerize via hydrogen shift (Ea = 40.00) to form the acetyl radical isomer, CH3C·O, which can decompose to CH3 + CO. Rate constants are estimated as function of pressure and temperature, using quantum Rice–Ramsperger–Kassel analysis for k(E) and the master equation for falloff. Important reaction products are CH3 + CO via decomposition at both high and low temperatures. A transition state for direct abstraction of hydrogen atom on CH2?C?O by H to form, ketenyl radical plus H2 is identified with a barrier of 12.27, at the CBS‐QCI/APNO level. ΔHf°298 values are estimated for the following compounds at the CBS‐QCI/APNO level: CH3C·O (?3.27), C·H2CHO (3.08), CH2?C?O (?11.89), HC·CO (41.98) (kcal/mol). © 2002 Wiley Periodicals, Inc. Int J Chem Kinet 35: 20–44, 2003  相似文献   

4.
Molecules of the title compound, alternatively called (R,R)‐N,N′‐bis(3‐methoxysalicylidene)‐trans‐cyclohexane‐1,2‐diamine, C22H26N2O4, contain two intramolecular O—H⃛N hydrogen bonds and adopt a conformation with approximate twofold rotational symmetry. The mol­ecules are linked by three C—H⃛O hydrogen bonds [H⃛O = 2.45–2.55 Å, C⃛O = 3.329 (2)–3.398 (2) Å and C—H⃛O = 142–172°] into a continuous framework.  相似文献   

5.
Molecules of 2‐(2‐nitrophenylaminocarbonyl)benzoic acid, C14H10N2O5, are linked into centrosymmetric R(8) dimers by a single O—H⋯O hydrogen bond [H⋯O = 1.78 Å, O⋯O = 2.623 (2) Å and O—H⋯O = 178°] and these dimers are linked into sheets by a single aromatic π–π stacking interaction. The isomeric compound 2‐(4‐nitrophenylaminocarbonyl)benzoic acid crystallizes in two polymorphic forms. In the orthorhombic form (space group P212121 with Z′ = 1, crystallized from ethanol), the mol­ecules are linked into sheets of R(22) rings by a combination of one N—H⋯O hydrogen bond [H⋯O = 1.96 Å, N⋯O = 2.833 (3) Å and N—H⋯O = 171°] and one O—H⋯O hydrogen bond [H⋯O = 1.78 Å, O⋯O = 2.614 (3) Å and O—H⋯O = 173°]. In the monoclinic form (space group P21/n with Z′ = 2, crystallized from acetone), the mol­ecules are linked by a combination of two N—H⋯O hydrogen bonds [H⋯O = 2.09 and 2.16 Å, N⋯O = 2.873 (4) and 2.902 (3) Å, and N—H⋯O = 147 and 141°] and two O—H⋯O hydrogen bonds [H⋯O = 1.84 and 1.83 Å, O⋯O = 2.664 (3) and 2.666 (3) Å, and O—H⋯O = 166 and 174°] into sheets of some complexity. These sheets are linked into a three‐dimensional framework by a single C—H⋯O hydrogen bond [H⋯O = 2.45 Å, C⋯O = 3.355 (4) Å and C—­H⋯O = 160°].  相似文献   

6.
Crystals of the title compound, C18H20N4O4, contain equal numbers of (R,R) and (S,S) mol­ecules, but these are not precise enantiomorphs, neither are they related by crystallographic symmetry; in addition, each mol­ecule exhibits approximate, but not exact, twofold rotational symmetry. There are intramolecular N—H?O hydrogen bonds [N?O 2.609 (4)–2.638 (5) Å; N—H?O 125–132°] and the mol­ecules are linked into molecular ladders by C—H?O hydrogen bonds [C?O 3.306 (6)–3.386 (6) Å; C—H?O 146–160°].  相似文献   

7.
8.
Mixed-ligand Complexes of Rhenium. V. The Formation of Nitrene Complexes by Condensation of Acetone at Coordinated Nitrido Ligands. Syntheses and Structures of fac-[Re{NC(CH3)2CH2C(O)CH3}X3(Me2PhP)2] Complexes (X = Cl, Br) The reaction of rhenium(V)-mixed-ligand complexes of the general formula [ReN(Cl)(Me2PhP)2(R2tcb)] (HR2tcb = N? (N,N-dialkylthiocarbamoyl)benzamidine) with HCl or HBr in acetone initializes a condensation of the solvent and results in nitrene-like compounds as a consequence of a nucleophilic attack of the coordinated nitrido ligand on the condensed acetone. The chelate ligands are removed during this reaction and complexes of the type fac-[Re{NC(CH3)2CH2C(O)CH3}X3(Me2PhP)2] (X = Cl, Br) are formed. fac-[Re{NC(CH3)2CH2C(O)CH3}Cl3(Me2PhP)2] crystallizes triclinic in the space group P1, a = 8.575(4); b = 9.088(3); c = 18.389(9) Å; α = 75.67(3)°, β = 85.30(3)°, γ = 70.58(4)°; Z = 2. A final R value of 0.031 was obtained on the basis of 6011 independent reflections with I ≥ 2σ(I). Rhenium is coordinated in a distorted octahedral environment with the three chloro ligands in facial positions. The rhenium-nitrogen bond (1,68(1) Å) is only slightly longer than typical Re? N bonding distances in nitrido complexes. fac-[Re{NC(CH3)2CH2C(O)CH3}Br3(Me2PhP)2] is isomorphous with the chloro complex. Triclinic cell with a = 8.625(4); b = 9.198(3); c = 18.581(5) Å; α = 75.62(3)°, β = 85.40(3)°, γ = 70.91(3)°; Z = 2. The R value converged at 0.049 on the basis of 3644 independent reflections with I ≥ 2σ(I). fac-[Re{NC(CH3)2CH2C(O)CH3}Cl3(Me2PhP)2] as well as fac-[Re{NC(CH3)2CH2C(O)CH3}Br3(Me2PhP)2] crystallizes in the noncentrosymmetric space group P1.  相似文献   

9.
In ferrocene‐1,1′‐diyl­bis­(di­phenyl­methanol)–2,2′‐dipyridyl­amine (1/1), [Fe(C18H15O)2]·C10H9N3, (I), there is an intramolecular O—H?O hydrogen bond [H?O 2.03 Å, O?O 2.775 (2) Å and O—H?O 147°] in the ferrocenediol component, and the two neutral molecular components are linked by one O—H?N hydrogen bond [H?N 1.96 Å, O?N 2.755 (2) Å and O—H?N, 157°] and one N—H?O hydrogen bond [H?O 2.26 Å, N?O 3.112 (2) Å and N—H?O 164°] forming a cyclic R(8) motif. One of the pyridyl N atoms plays no part in the intermolecular hydrogen bonding, but participates in a short intramolecular C—H?N contact [H?N 2.31 Å, C?N 2.922 (2) Å and C—H?N 122°].  相似文献   

10.
Conformational energy profiles were calculated for τ1, the C? C? C?O torsion, and τ2, the C? C? C? C torsion, of methyl butanoate, using Pulay's ab initio gradient procedure at the 4-21G level with geometry optimization at each point. In addition, the structures of seven conformations were fully relaxed, including the energy minima (τ1, τ2) = (0, ?60), (0, 180), (120, 180), (120, ?60), and the maxima (0, 0), (180, 180), and (60, ?60). The calculated geometries confirm the previously formulated rule that, in saturated hydrocarbons, a C? H bond trans to a C? C bond (C? Hs) is consistently shorter than a C? H bond (C? Ha) trans to another C? H bond. Specifically, for X? C(α) (? O)? C(β)? C(γ)? C(δ) systems, the following rules can be formulated, incorporating results from previous studies of butanal, butanoic acid, and 2-pentanone: (1) C(δ)? Hs < C(δ)? Ha in all the conformers in which the δ-methyl group is remote from the ester group; whereas, in all the conformers in which nonbonded interactions are possible between the C(δ)-methyl and the ester groups, the bonding pattern is affected by a C? H ?O?C interaction. (2) In the most stable conformers, (0, 60), C(β)? Ha < C(β)? Hs, and C(γ)? Ha < C(γ)? Hs, regardless of X. (3) The average C? C bonds in the τ2 = 180° conformers are consistently shorter than those with τ2 = 60° (compared at τ1 constant). In the most stable conformations (τ1 = 0°, τ2 = 60° or 180°), the bonding sequence is consistently C(α)? C(β) < C(β)? C(γ) < C(γ)? C(δ); whereas, when τ1 = 120°, C(α)? C(β) < C(β)? C(γ) > C(γ)? C(δ).  相似文献   

11.
Inhaltsübersicht. Die Titelverbindungen R2N–CS–S–N[Si(CH3)3]2 mit Ii = CH3 bzw. CH(CH3)2 kristallisieren orthorhombisch bzw. monoklin: Gitterkonstanten für R = CH3 (bei ?165°C) a = 8,397(4) Å, b = 11,917(4) Å, c = 31,966 (11) Å, Pbca (Nr. 61), Z = 8. R = CH(CH3)2 (bei ?80°C) a =13,183(3) Å, b = 10,873(11) Å, c = 14,865(2) Å, β = 105,86(2)° P21/n (Nr. 14), Z = 4. Die Kristallstrukturen wurden unter Verwendung von 4227 bzw. 3 433 symmetrieunabhängigen Reflexen (gemessen bei ?165 bzw. ?80 °C) bestimmt und bis auf Zuverlässigkeitsfaktoren von R = 0,081 bzw. 0,082 verfeinert (Rw = 0,084 bzw. 0,114). Bei beiden Verbindungen ist der C2N–CS–S–N-Teil des Moleküls nahezu planar. Zwischen dem Thiocarbonyl-S-Atom und dem N-Atom der silylierten Aminogruppe bestehen Wechselwirkungen. On Chalcogenolates. 194. S-Bis (trimethylsilyl) amino Esters of Dithiocarbamic Acids. 3. Crystal and Molecular Structure of the Methyl and i-Propyl Derivative The title compounds R2N–CS–S–N[Si(CH3)3]2 with R = CH3 and CH(CH3)2, respectively, crystallize orthorhombic and monoclinic, resp.; cell dimensions and space group see “Inhaltsübersicht”. The structures of both compounds have been determined from single crystal X-ray data measured at ?165°C and ?80°C, resp., and refined to R's of 0.081 and 0.082, resp., (Rw = 0.084 and 0.114, resp.) using 4227 and 3433, resp., independent reflections. In both compounds the C2N–CS–S–N core of the molecule is nearly plane. Between the thiocarbonyl sulfur atom and the nitrogen atom of the amino group interactions exist. In Fortführung unserer Untersuchungen [1, 2] über N, N-Dialkyldithiocarbamidsäure-S-bis(trimethylsilyl)aminoester R2N–CS–S–N[Si(CH3)3]2 haben wir die Kristall- und Molekülstrukturen der Verbindungen mit R = CH3 und CH(CH3)2 bestimmt. Dabei sollte untersucht werden, welchen Einfluß sterisch anspruchsvollere Alkylgruppen (R = CH3 → CH(CH3)2) auf die Molekülgeo-metrie haben. Eine strukturchemische Charakterisierung dieser Verbindungs-klasse ist bis jetzt noch nicht erfolgt; vgl. die Literaturzusammenstellung bei [3].  相似文献   

12.
Molecules of the title compound (systematic name: 2‐amino‐3‐bromo‐5‐nitro­benzo­nitrile), C7H4BrN3O2, are linked by N—H?N and N—H?O hydrogen bonds [H?N 2.19 Å, N?N 3.019 (4) Å and N—H?N 157°, and H?O 2.17 Å, N?O 2.854 (3) Å and N—H?O 134°] to form (10) sheets built from alternating R(12) and R(36) rings, both of which are centrosymmetric.  相似文献   

13.
The prominent features in the molecular structure of the title compound (alternative name: 2‐diethyl­carbamoyl‐1,1,3,3‐tetraoxo‐1,3,2‐benzodi­thia­zole), C11H14N2O5S2, arise in the urea moiety S2N—C(O)—N′C2: the sum of the angles at N is 332.3 (1)°, the N—C(O)—N′C2 unit is planar, and distances N—C(O) = 1.494 (3) Å, N′—C(O) = 1.325 (2) Å and C—O = 1.215 (2) Å. The mol­ecules are associated via five C—H?O hydrogen bonds to form layers parallel to the yz plane. This compound and its di­methyl homologue, which were synthesized by treating the silver salt of o‐benzene­disulfon­imide with carbamoyl chlorides, are prone to rapid hydro­lysis at the weak N—C(O) bond. For both mol­ecules, the rotational barrier about the partial N′—C(O) double bond is ca 50 kJ mol?1 at 250 K (from dynamic 1H NMR experiments).  相似文献   

14.
In the title compound, C4H12N22+·2C8H7O3?·2CH4O, the cations lie across centres of inversion and are disordered over two orientations with equal occupancy; there are equal numbers of (R)‐ and (S)‐mandelate anions present (mandelate is α‐hydroxy­benzene­acetate). The anions and the neutral water mol­ecules are linked by O—H?O hydrogen bonds [O?O 2.658 (3) and 2.682 (3) Å, and O—H?O 176 and 166°] into deeply folded zigzag chains. Each orientation of the cation forms two symmetry‐related two‐centre N—H?O hydrogen bonds [N?O 2.588 (4) and 2.678 (4) Å, and N—H?O 177 and 171°] and two asymmetric, but planar, three‐centre N—H?(O)2 hydrogen bonds [N?O 2.686 (4)–3.137 (4) Å and N—H?O 137–147°], and by means of these the cations link the anion/water chains into bilayers.  相似文献   

15.
Ab initio self-consistent field (SCF) Hartree-Fock calculations of sulfates R? O? SO3(?1) (R = Me, Et, i-Pr) and sulfamates R? NHSO3(?1) (R = H, Me, Et, i-Pr) were performed at the 4-31G(*S*N) //3-21G(*S*N) basis set levels, where asterisks indicate d functions on sulfur and nitrogen atoms. These standard levels were determined by comparing calculation results with several basis sets up to MP2/6-31G*//6-31G*. Several conformations per compound were studied to obtain molecular geometries, rotational barriers, and potential derived point charges. In methyl sulfate, the rotational barrier around the C? O bond is 1.6 kcal/mol at the MP2 level and 1.4 kcal/mol at the standard level. Its ground state has one of three HCOS torsion angles trans and one of three COSO torsion angles trans. Rotation over 60° around the single O? S bond in the sulfate group costs 2.5 kcal/mol at the MP2 and 2.1 kcal/mol at the standard level. For ethyl sulfate, the calculated rotational barrier in going from the ground state, which has its CCOS torsion angle trans, to the syn-periplanar conformation (CCOS torsion angle cis) is 4.8 kcal/mol. However, a much lower barrier of 0.7 kcal/mol leads to a secondary gauchelike conformation about 0.4 kcal/mol above the ground state, with the CCOS torsion angle at 87.6°. Again, one of the COSO torsion angles is trans in the ground state, and the rotational barrier for a 60° rotation of the sulfate group amounts to 1.8 kcal/mol. For methyl sulfamate, the rotational barriers are 2.5 kcal/mol around the C? N bond and 3.3 kcal/mol around the N? S bond. This is noteworthy because sulfamate itself has a calculated rotational barrier around the N? S bond of only 1.7 kcal/mol. These and other data were used to parameterize the well-known empirical force fields AMBER and CHARMm. When the new fields were tested by means of vibrational frequency calculations at the 6-31G*//6-31G* level for methyl sulfate, sulfamate, and methyl sulfamate ground states, the frequencies compared favorably with the AMBER and CHARMm calculated frequencies. The transferability of the force parameters to β-D -glucose-6-sulfate and isopropyl sulfate appears to be better than to isopropyl sulfamate. © 1995 by John Wiley & Sons, Inc.  相似文献   

16.
1‐Pentynes containing different amino acid moieties and pendant terminal groups {HC?C(CH2)2CONHC(R′)HCO2CH3, where R′ = CH3, CH2CH(CH3)2, CH2C6H5, and HC?C(CH2)2CONHC[CH2CH(CH2)3]HCO2‐(1R,2S,5R)‐(+)‐menthol} have been designed and synthesized. The polymerizations of the monomers are effected by organorhodium catalysts, giving soluble polymers with moderate molecular weights in satisfactory yields. The structures and properties of the polymers have been characterized and evaluated with infrared, nuclear magnetic resonance, thermogravimetric analysis, circular dichroism, and ultraviolet analyses. All the polymers are thermally stable (≥300 °C) and show strong circular dichroism signals at ~310 nm because of the helicity of the polyene backbone. The circular dichroism and ultraviolet absorptions of the polymers can be tuned with a solvent. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6190–6201, 2006  相似文献   

17.
Stereoregular polymerization involving asymmetry at phosphorus has been obtained from ethylene methyl or phenyl phosphorothioate with R2Mg? NH3 catalysts, or, in some cases, with R2Mg alone. The methyl ester gave two types of polymer: an amorphous rubber and a low-melting (75°C) crystalline polymer. The phenyl ester gave mainly a low-melting (68°C) crystalline polymer of 2.2 inherent viscosity. Proton and 31P NMR and infrared spectra of these polymers are in accord with the expected chain unit, ? CH2CH2? O? P(S)(OR)? O? . The polymerization mechanism probably involves an anionic ring-opening step with P? O cleavage. Ring opening with C? O cleavage appears to be largely excluded. This conclusion is based on the expectation that anionic ring opening with C? O cleavage should lead to a rearranged chain unit, ? CH2CH2? O? P(O)? (OR)? S? , because of the high nucleophilicity of sulfur as compared with oxygen. Proton and 31P NMR spectra give no evidence for the rearranged unit within the limit of detection (ca. 3%). However, on aging, the methyl ester polymer changes drastically to form up to 40% CH2SP groups. Presumably, the polymer undergoes the well-known thiono-thiolo rearrangement characteristic of simple phosphorothioate esters to form ? CH2CH2? O? P(O)(SCH3)? O? chain units. The phenyl ester polymer is stable under the same aging conditions.  相似文献   

18.
Formation and Crystal Structure of FcCH( t ‐Bu)NHCH(Me)CH2OMe · LiI · Et2O The title compound FcCH(t‐Bu)NHCH(Me)CH2OMe · LiI · Et2O ( 1 · LiI · Et2O) was obtained by reaction of FcCH(t‐Bu)N(Li)CH(Me)CH2OMe with MeI in a molar ratio 1 : 1 in diethylether. The Li atom is substituted by an H atom yielding the secondary amine. The formation of the expected N‐methyl substituted species could not be observed. 1 creates monomeric molecules with four coordinate Li atoms as a result of Li–N and Li–O interactions of the corresponding atoms of the ferrocenyl ligand and a solvent molecule. 1 · LiI · Et2O: Space group P212121, Z = 4, lattice dimensions at –60 °C: a = 10.492(2), b = 13.225(2), c = 18.846(3) Å, β = 90°, R1 = 0.0478, wR2 = 0.0801.  相似文献   

19.
Crosslinking of poly(vinyl chloride) (PVC) with 2-R-4,6-dithiol-s-triazine (R-DT) and metal activators has been studied to determine crosslinking rate constants, induction periods, and apparent activation energy and the final efficiency of crosslinking agents. The rate constants were about 1.4–7.5 min?1 and the induction periods were about 6.8–24.3 min for various kinds of R-DT at 180°C. The activation energy was about 16.6–33 kcal/mol over the temperature range 160–195°C. The rate constants were strongly influenced by 2-substituted groups (R) in R-DT and increased in the order R′O-? R′NH-< (R′)2N, where R′ is an alkyl or aryl group. Further, the rate constants increased in the order of: metal carboxylates < metal carboxylates < metal oxides for the activators and in the order of: Pb < Mg < Ca < Ba < Na for metal atoms. The final efficiency was about 75–80% for the activators such as MgO, MgCO3, PbO, and SnO. The activators containing Na, Ca, and Ba atoms, however, gave final efficiency of more than 100%.  相似文献   

20.
The title salt, methyl (1R,2R,3S,5S,8S)‐3‐benzoyl­oxy‐8‐methyl‐8‐aza­bicyclo­[3.2.1]octane‐2‐carboxyl­ate tetra­chloro­aurate(III), (C17H22NO4)[AuCl4], has its protonated N atom intra­molecularly hydrogen bonded to the O atom of the methoxy­carbonyl group [N⋯O = 2.755 (6) Å and N—H⋯O = 136°]. Two close inter­molecular C—H⋯O contacts exist, as well as five C—H⋯Cl close contacts. The [AuCl4] anion was found to be distorted square planar.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号