首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The synthesis and characterization of two new complexes (IPr)Pd(acac)2 (1) and (IPr)Pd(acac)Cl (2) (IPr=(N,N'-bis(2,6-diisopropylphenyl)imidazol)-2-ylidene, acac=acetylacetonate) are described. Complex 2 can be prepared in a one-pot protocol in high yield. A study detailing the versatility of 2 to effectively catalyze a series of cross-coupling reactions is discussed.  相似文献   

2.
Three cis-chelating di-N-heterocyclic carbene palladium(II) complexes [PdX2(diNHC)] (X = I, 1; X = SCN, 2; X = CF3CO2, 3) bearing different anionic co-ligands were synthesized and fully characterized. A comparison of their catalytic activities in the Mizoroki-Heck reaction and conjugate addition of arylboronic acids to cyclic enones revealed increasing efficiency in the order SCN < I < CF3CO2. The di(trifluoroacetato) complex 3 showed the best activity in both transformations highlighting the importance of co-ligands effects in catalysis. In addition, the molecular structure of an unusual poly-heteronuclear complex salt 4 is reported, which has been isolated as a byproduct in the synthesis of complex 3.  相似文献   

3.
The synthesis of novel Rh(1,3-bis(2,4,6-trimethylphenyl)-3,4,5,6-tetrahydropyrimidin-2-ylidene)(COD) tetrafluoroborate (1, COD = η4-1,5-cyclooctadiene) is described. The N-heterocyclic carbene acts as a bidentate ligand with the carbene coordinating to the Rh(I) center and an arene group acting as a homoazallyl ligand. 1 was used in various carbonyl arylation and hydrosilylation reactions allowing the formation of the desired products with unprecedented selectivity and efficiency. Thus, turn-over numbers (TONs) up to 2000 were achieved.  相似文献   

4.
Reaction of the sterically bulky 1,3-dibenzhydrylbenzimidazolium bromide (Bh2-bimyH+Br) (A) with Pd(OAc)2 in DMSO yielded a mono(carbene) Pd(II) complex 1 with a N-bound benzimidazole derivative, which resulted from an unusual NHC rearrangement reaction. Reaction of A with Ag2O, on the other hand, cleanly gave the Ag(I) carbene complex [AgBr(Bh2-bimy)] (2), which has been used as a carbene-transfer agent to prepare the acetonitrile complex trans-[PdBr2(CH3CN)(Bh2-bimy)] (3). Dissociation of acetonitrile from complex 3 and subsequent dimerization afforded the dinuclear Pd(II) complex [PdBr2(Bh2-bimy)]2 (4) in quantitative yield. All complexes were fully characterized by multinuclear NMR spectroscopies, ESI mass spectrometry and X-ray diffraction analysis. Furthermore, the catalytic activity of complex 4 in aqueous Suzuki-Miyaura cross-coupling reactions was studied and compared with that of its previously reported less bulky analogue [PdBr2(iPr2-bimy)]2.  相似文献   

5.
Tetra-ether substituted imidazolium salts, LHX (where LH = N,N′-bis(2,2-diethoxyethyl)imidazolium cation and X = Br, BF4, PF6, BPh4, NO3 and NTf2 anions) were derived from imidazole. Attempts to produce aldehyde functionalized imidazolium salt through acid hydrolysis of LHBr resulted an unexpected tetra-hydroxy compound LAHBr and the dialdehyde compound LBHBr. Reaction of LHBr with Ag2O afforded [L2Ag][AgBr2] (1). Mononuclear Pd-complex trans-[L2PdCl2] (2) and dinuclear Pd-complex [(LPdCl2)2] (3) were obtained by 1:1 and 1:2 reaction of in situ generated Ag-carbene with Pd(CH3CN)2Cl2. cis-[LPdPPh3Cl2] (4) was synthesized from reaction of PPh3 with dinuclear complex 3. Hydrolysis of 3 under acidic conditions also generates a hydroxy derivative 3A and the aldehyde derivative 3B. Direct heating of LHBr with Ni(OAc)2 · 4H2O at 120 °C under vacuum generated trans-[L2NiBr2] (5). These complexes were characterized by NMR, mass, elemental analysis, and X-ray single crystal diffraction analysis. Pd--Pd interaction was observed in 3. All the Pd complexes exhibited excellent catalytic activity in Heck reaction.  相似文献   

6.
A series of new ethylene-bridged bis(imidazolium) halides with various N-substitutions were synthesized. Complexation of these imidazolium halides with Pd(OAc)2 produced new Pd(II) ethylene-bridged bis(carbene) complexes. Crystallographic analyses of some of the new imidazolium salts and Pd(II) complexes were determined. Applications of these seven-member palladacycles in Suzuki and Heck coupling reactions produced comparable catalytic activities to those of six-member analogs.  相似文献   

7.
The preparation of seven concave NHC metal complexes derived from bimacrocyclic imidazolinium salt 1 is reported. The silver complex 2, obtained in 86% yield by reacting 1 with silver(I) oxide, was used to give copper complex 3, rhodium complex 5 and iridium complex 6 by transmetalation in good yields. Palladium complex 4 was obtained by reaction of the azolium salt 1 with palladium dichloride in 3-chloropyridine. The rhodium and iridium dicarbonyl complexes 7 and 8 were prepared via ligand exchange from the COD complexes 5 and 6. Silver complex 2, copper complex 3 and palladium complex 4 were characterized by single-crystal X-ray analysis. Silver complex 2 and copper complex 3 were tested in the cyclopropanation of styrene and indene with EDA (ethyl diazoacetate), where good results were obtained with 3, while low conversion and catalyst decomposition was observed with 2.  相似文献   

8.
Mononuclear mixed-ligand complexes of Pd(II) containing a N,S-heterocyclic carbene (NSHC) with a secondary alkyl N-substituent and pyridyl ligand, with the general formula [PdI2(C10H11NS)L] (C10H11NS = 3-isopropylbenzothiazolin-2-ylidene; L = pyridine, 2-aminopyridine, 3-iodopyridine and 4-tert-butyl-pyridine) have been synthesized and characterized by X-ray single-crystal crystallography. Both solution and solid-state structures, as evident from their 1H NMR spectra and X-ray structures, show anagostic γ-hydrogen interactions of metal with methine of the substituent on the carbene or pyridyl ligand giving 5-membered-chelate-like structures.  相似文献   

9.
A series of palladium(II) complexes (1-6) bearing cis-chelating homo-dicarbene ligands with varying alkyl bridges (C1-C3) and N-heterocyclic backbones (imidazole and benzimidazole) have been synthesized by reaction of Pd(OAc)2 with the respective diazolium bromides (A·2HBr - F·2HBr) in DMSO. A comparative catalytic study employing aryl chlorides in the Mizoroki-Heck reaction revealed the superiority of methylene- and propylene-bridged dibenzimidazolin-2-ylidenes over their imidazole-derived analogues. Based on these results, two new propylene-bridged hetero-dicarbene complexes (7 and 8) were designed containing a mixed benzimidazole/imidazole-derived NHC-donor set. Notably, both complexes outperformed their homo-dicarbene analogues, which may be due to the electronic asymmetry induced by hetero-dicarbene ligands. The molecular structures of complex 6 and 8 are also presented.  相似文献   

10.
The preparation of a bimacrocyclic NHC palladium allyl complex 4 is described. The complex was obtained by transmetalation with allyl palladium chloride dimer from the NHC silver complex 2 in 85% yield. Complex 4 was fully characterized by spectroscopic methods and by single-crystal X-ray analysis. In a preliminary catalytic study, complex 4 showed high activity in the Suzuki-Miyaura cross-coupling of unactivated aryl chlorides and bromides with 1-naphthalene-boronic acid at low catalyst loading. Good results were also obtained in the Mizoroki-Heck reaction of aryl bromides with styrene, but a decrease in yield was observed when aryl chlorides were used.  相似文献   

11.
Compound MoO2Cl2(THF)2 reacts with two equivalents of 1,3-dialkyl substituted 4,5-dimethylimidazol-2-ylidenes to give the dioxomolybdenum(VI) complexes MoO2Cl2(LR)2 [R = Me (1), i-Pr (2)]. Treatment of MoO2Cl2(THF)2 with one equivalent of the N-heterocyclic carbenes LMe, Li-Pr and C1Ln-Bu (LMe = 1,3,4,5-tetramethylimidazol-2-ylidene, Li-Pr = 1,3-diisopropyl-4,5-dimethylimidazol-2-ylidene, and C1Ln-Bu = 1,3-dibutyl-4,5-dichloroimidazol-2-ylidene) affords the monocarbene adducts MoO2Cl2(LR) [R = Me (3), i-Pr (4)] and MoO2Cl2(C1Ln-Bu) (5), respectively. Decomposition of complexes 1-5 affords a molybdenum oxychloride anion [Mo2O5Cl4]2− as an imidazolium salt.  相似文献   

12.
A dramatic improvement of the catalytic activity was observed when a phosphine was added in allylic alkylation reactions catalyzed by (NHC)Pd(η3-C3H5)Cl complexes. Consequently, several palladium complexes, generated in situ from different NHC-silver complexes, [Pd(η3-C3H5)Cl]2 and PPh3, were tested in this reaction to evaluate their potential. High reaction rates and conversions could be obtained with this catalytic system in the alkylation of allylic acetates with dimethylmalonate, particularly under biphasic conditions using water/dichloromethane and KOH 1 M as the base. These conditions are experimentally more convenient and gave higher reaction rates than the classical anhydrous conditions (NaH/THF). In this system, the phosphine is essential since no conversion was obtained when it is not present. The steric hindrance of the carbene ligand has a great influence on the activity and the stability of the catalytic system. The best NHC ligands for this reaction are either 1-mesityl-3-methyl-imidazol-2-ylidene or 1-(2,6-diisopropylphenyl)-3-methyl-imidazol-2-ylidene which are less bulky among the NHC tested. These two ligands led in 5 min to a complete conversion at 20 °C. The Pd-catalyzed allylic amination reaction using (E)-1,3-diphenylprop-3-en-yl acetate and benzylamine was also tested with (NHC)(PPh3)Pd complexes and under the biphasic conditions. This reaction was found to be slower than the alkylation with dimethylmalonate but a complete conversion could be reached in 6 h at 20 °C using K2CO3 1 M as the base. NMR experiments indicated that mixed (NHC)(PPh3)Pd complexes are formed in situ but their structure could not be established exactly.  相似文献   

13.
A very straightforward one-pot method has been developed for preparation of air-stable CpPd(NHC)Cl complexes 1a-d. This new class of well-defined NHC-Pd complexes exhibits high catalytic activity in Kumada-Tamao-Corriu cross-coupling reaction involving various aryl and heteroaryl chlorides. Notably, the less sterically encumbered NHC ligand around Pd centre showed higher catalytic activity.  相似文献   

14.
A new preparation of chiral imino-imidazolium salts has been developed by condensation of chiral primary amines with 1-(2-oxo-2-phenyl-ethyl)-imidazolium salts in chloroform. This reaction gave the (E)-imino-imidazolium salts with stereoselectivities superior to 95:5. The structure of the imines were determined by NMR analyses. Reduction of the chiral (E)-imino-imidazolium salts with NaBH4 in MeOH led to amino-imidazolium salts as a mixture of diastereomers with selectivities ranging from 84:16 to 90:10. The major diastereoisomer could be purified in some cases by crystallization and the absolute configurations were determined by X-ray diffraction. Chelating amino-N-heterocyclic carbene dichloro palladium(II) complexes were obtained in two steps via formation of the corresponding silver(I) complexes and reaction of these latters with bis(acetonitrile)dichloropalladium. Crystal structure details of a cis-dichloro amino-imidazol-2-ylidene palladium complex are presented and confirmed the formation of a six-membered Pd-metallocycle.  相似文献   

15.
Mononuclear mercury complexes (1, 2, and 3) bearing bis-N-heterocyclic carbene (NHC) ligands of the form [(NHC)2-μ-Hg]+2 have been prepared and structurally characterised. The complexes were derived from three bis-imidazolium salts as precursors to NHC; either 1,3-bis(N-methylimidazolium-1-ylmethyl)benzene bis(hexafluorophosphate) (I·2PF6), 1,3-bis(N-butylimidazolium-1-ylmethyl)benzene bis(hexafluorophosphate) (II·2PF6) or 3,5-bis(N-butylimidazolium-1-ylmethyl)toluene bis(hexafluorophosphate) (III·2PF6) treated with mercury(II) acetate. Interestingly X-ray crystal structure analysis revealed a close interaction between the Hg metal centre with one carbon atom of the aryl linker in addition to coordination with two NHCs.  相似文献   

16.
A new ferrocenyl-N-heterocyclic carbene ligand precursor 1,1′-bis[(1-tert-butylimidazolium)-3-methyl]ferrocene dichloride has been synthesised and structurally characterised. The imidazolium salt was readily deprotonated in situ with KN(SiMe3)2 and reacted with [PdCl2 (cod)] to afford the structurally characterised palladium (II) complex trans-[PdCl2(CfcC)], where (cod) = 1,5-cyclooctadiene and (CfcC) = 1,1′-di-tert-butyl-3,3′-(1,1′-dimethyleneferrocenyl)-diimidazol-2-ylidene.  相似文献   

17.
A new type of well-defined N-heterocyclic carbene (NHC)-palladium chloride-imidazole complexes derived from IPrHCl or IMesHCl, PdCl2 and 1-methylimidazole exhibits high catalytic activity in the room-temperature Suzuki-Miyaura coupling reactions of aryl or heteroaryl chlorides. Moreover, the large-scale (20.0 mmol) couplings in the presence of 0.01 mol% catalyst loading can also give the corresponding coupling products in high yields.  相似文献   

18.
The atom-efficient cross-coupling reaction of triarylbismuths with a variety of aliphatic, aromatic, and hetero-aromatic acyl chlorides was demonstrated to afford high yields of cross-coupled ketones under palladium catalysis. The corresponding cross-coupling reaction with diacid chlorides also furnished bis-coupled ketones in good yields.  相似文献   

19.
We report new chiral bisimidazolium salts synthesized from naturally occurring l-amino acids. They served as precursors for bidentate N-heterocyclic carbene metal complexes. The chiral imidazoles could be synthesized in good yields via a one-pot ring closing reaction, followed by esterification. The methylene bridged bisimidazolium iodide salts are accessible in moderate yields. Corresponding palladium(II)- and platinum(II)-NHC complexes could be synthesized and fully characterized, but do not show optical activity. We also report a solid state structure of one of the synthesized palladium(II) biscarbene compounds derived from alanine.  相似文献   

20.
Yi-Qiang Tang 《Tetrahedron》2010,66(40):7970-9483
Pd(II)-N-heterocyclic carbene complexes derived from proline have been successfully synthesized in good yields and their structures have been characterized by X-ray single crystal diffraction. It was found that the substituents on the N-atom of the pyrrolidine skeleton dramatically affect on the coordination pattern of the palladium complexes. In a word, when an electron-rich group as benzyl group was attached on the N-atom, both of the N-atom and NHC were coordinated to the Pd(II) center; while when an electron-poor group as Ts group was attached, a dimeric mono-coordinated Pd(II)-NHC was obtained exclusively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号