首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The reaction of [AuCl(SMe2)] with in situ generated [AgCl(iPr2-bimy)] (iPr2-bimy = 1,3-diisopropylbenzimidazolin-2-ylidene), which in turn was obtained by the reaction of Ag2O with 1,3-diisopropylbenzimidazolium bromide (iPr2-bimyH+Br, A), afforded the monocarbene Au(I) complex [AuCl(iPr2-bimy)] (1). Subsequent reaction of 1 and the ligand precursor iPr2-bimyH+BF4, (B) in acetone in the presence of K2CO3 yielded the bis(carbene) complex [Au(iPr2-bimy)2]BF4 (2) as a white powder in 80% yield. The oxidative addition of elemental iodine to complex 2 gave the bis(carbene) Au(III) complex trans-[AuI2(iPr2-bimy)2]BF4 (3) as an orange-red powder in 92% yield. All complexes 1-3 have been fully characterized by multinuclear NMR spectroscopies, ESI mass spectrometry, elemental analysis, and X-ray single crystal diffraction. Complexes 1 and 2 adopt a linear geometry around metal centers as expected for d10 metals. The geometry around the Au(III) metal center in 3 is essentially square-planar with two carbene ligands in trans-position to each other. Complex 3 shows absorption and photoluminescence properties owing to a ligand to metal charge transfer.  相似文献   

2.
Three diruthenium(III) compounds Ru2(L)4Cl2, where L is mMeODMBA (N,N′-dimethyl-3-methoxybenzamidinate, 1a), DiMeODMBA (N,N′-dimethyl-3,5-dimethoxy benzamidinate, 1b), or DEBA (N,N′-diethylbenzamidinate, 1c), were prepared from the reactions between Ru2(OAc)4Cl and respective HL under reflux conditions. Metathesis reactions between 1 and LiC2Y resulted in bis-alkynyl derivatives Ru2(L)4(C2Y)2 [Y=Ph (2), SiMe3 (3), SiiPr3 (4) and C2SiMe3 (5)]. The parent compounds 1 are paramagnetic (S=1), while bis-alkynyl derivatives 2-5 are diamagnetic and display well-solved 1H- and 13C-NMR spectra. Molecular structures of compounds 1b, 1c, 2c, 3c and 4b were established through single crystal X-ray diffraction studies, which revealed RuRu bond lengths of ca. 2.32 Å for parent compounds 1 and 2.45 Å for bis-alkynyl derivatives. Cyclic voltammograms of all compounds feature three one-electron couples: an oxidation and two reductions, while the reversibility of observed couples depends on the nature of axial ligands.  相似文献   

3.
Reaction of O,O’-diisopropylthiophosphoric acid isothiocyanate (iPrO)2P(S)NCS with diethyl 4-aminobenzylphosphonate (EtO)2P(O)CH2C6H4-4-NH2 leads to the new N-thiophosphorylated thiourea (EtO)2P(O)CH2C6H4-4-[NHC(S)NHP(S)(OiPr)2] (HL). Reaction of the potassium salt of HL with Zn(II), Cd(II) and Co(II) in aqueous EtOH leads to complexes of formula M(L-S,S’)2 (ML2). Heteroligand copper(I) complex of HL and triphenylphosphine was prepared by the reaction of the potassium salt KL and Cu(PPh3)3I. Copper in complex Cu(PPh3)L is bound by one PPh3 and one SCNPS fragment of the chelating ligand. Compounds obtained were investigated by IR, UV–Vis, 1H and 31P{1H} NMR spectroscopy, and microanalysis. The structures of HL and Cu(PPh3)L were investigated by single crystal X-ray diffraction analysis.  相似文献   

4.
The reactions of Mo2(O2CCH3)4 with different equivalents of N,N′-bis(pyrimidine-2-yl)formamidine (HL1) and N-(2-pyrimidinyl)formamide (HL2) afforded dimolybdenum complexes of the types Mo2(O2CCH3)(L1)2(L2) (1) trans-Mo2(L1)2(L2)2 (2) cis-Mo2(L1)2(L2)2 (3) and Mo2(L2)4 (4). Their UV–Vis and NMR spectra have been recorded and their structures determined by X-ray crystallography. Complexes 2 and 3 establish the first pair of trans and cis forms of dimolybdenum complexes containing formamidinate ligands. The L1 ligands in 13 are bridged to the metal centers through two central amine nitrogen atoms, while the L2 ligands in 14 are bridged to the metal centers via one pyrimidyl nitrogen atom and the amine nitrogen atom. The Mo–Mo distances of complexes 1 [2.0951(17) Å], 2 [2.103(1) Å] and 3 [2.1017(3) Å], which contain both Mo?N and Mo?O axial interactions, are slightly longer than those of complex 4 [2.0826(12)–2.0866(10) Å] which has only Mo?O interactions.  相似文献   

5.
The organo-tin compounds, Me2Sn(C5H4R-1)2 (R = Me (1), Pri (2), But (3), SiMe3 (4)) and Me2Sn(C5Me4R-1)2 (R = H (5), SiMe3 (6)), were prepared by the reaction of Me2SnCl2 with the lithium or sodium derivative of the corresponding cyclopentadiene. Compounds 1-6 have been characterized by multinuclear NMR spectroscopy (1H, 13C, 119Sn). In addition the molecular structures of 5 and 6 were determined by single crystal X-ray diffraction studies. The transmetalation reaction of 1-6 with ZrCl4 or [NbCl4(THF)2] gave the corresponding metallocene complexes in high yields.  相似文献   

6.
Novel condensation reaction of tropone with N-substituted and N,N′-disubstitued barbituric acids in Ac2O afforded 5-(cyclohepta-2′,4′,6′-trienylidene)pyrimidine-2(1H),4(3H),6(5H)-trione derivatives (8a-f) in moderate to good yields. The 13C NMR spectral study of 8a-f revealed that the contribution of zwitterionic resonance structures is less important as compared with that of 8,8-dicyanoheptafulvene. The rotational barriers (ΔG) around the exocyclic double bond of mono-substituted derivatives 8a-c were obtained to be 14.51-15.03 kcal mol−1 by the variable temperature 1H NMR measurements. The electrochemical properties of 8a-f were also studied by CV measurement. Upon treatment with DDQ, 8a-c underwent oxidative cyclization to give two products, 7 and 9-substituted cyclohepta[b]pyrimido[5,4-d]furan-8(7H),10(9H)-dionylium tetrafluoroborates (11a-c·BF4 and 12a-c·BF4) in various ratios, while that of disubstituted derivatives 8d-f afforded 7,9-disubstituted cyclohepta[b]pyrimido[5,4-d]furan-8(7H),10(9H)-dionylium tetrafluoroborate (11d-f·BF4) in good yields. Similarly, preparation of known 5-(1′-oxocycloheptatrien-2′-yl)-pyrimidine-2(1H),4(3H),6(5H)-trione derivatives (14a-d) and novel derivatives 14e,f was carried out. Treatment of 14a-c with aq. HBF4/Ac2O afforded two kinds of novel products 11a-c·BF4 and 12a,c·BF4 in various ratios, respectively, while that of 14d-f afforded 11d-f. The product ratios of 11a-c·BF4 and 12a-c·BF4 observed in two kinds of cyclization reactions were rationalized on the basis of MO calculations of model compounds 20a and 21a. The spectroscopic and electrochemical properties of 11a-f·BF4 and 12a-c·BF4 were studied, and structural characterization of 11c·BF4 based on the X-ray crystal analysis and MO calculation was also performed.  相似文献   

7.
The C,N-(trimethylsilyliminodiphenylphosphoranyl)silylmethylmetal complexes [Fe(L)2] (3), [Co(L)2] (4), [ZrCl3(L)]·0.83CH2Cl2 (5), [Fe(L)3] (6), [Fe(L′)2] (7) and [Co(L′)2] (8) have been prepared from the lithium compound Li[CH(SiMe2R)P(Ph)2NSiMe3] [1a, (R = Me) {≡ Li(L)}; 1b, (R = NEt2) {≡ Li(L′)}] and the appropriate metal chloride (or for 7, FeCl3). From Li[N(SiMe3)C(Ph)C(H)P(Ph)2NSiMe3] [≡ Li(L″)] (2), prepared in situ from Li(L) (1a) and PhCN, and CoCl2 there was obtained bis(3-trimethylsilylimino- diphenylphosphoranyl-2-phenyl-N-trimethylsilyl-1-azaallyl-N,N)cobalt(II) (9). These crystalline complexes 3-9 were characterised by their mass spectra, microanalyses, high spin magnetic moments (not 5) and for 5 multinuclear NMR solution spectra. The X-ray structure of 3 showed it to be a pseudotetrahedral bis(chelate), the iron atom at the spiro junction.  相似文献   

8.
This work presents cyclic voltammetry and double potential step chronoamperometry experiments corresponding to the electrochemical reduction of the substituted 1,10-phenanthroline ligands in the coordination compounds [Ru(pdto)(1,10-phenanthroline)]Cl2 (1), [Ru(pdto)(5,6-dimethyl-1,10-phenanthroline)]Cl2 (2), [Ru(pdto)(4,7-diphenyl-1,10-phenanthroline)]Cl2 (3), [Ru(pdto)(4,7-dimethyl-1,10-phenanthroline)]Cl2 (4) and [Ru(pdto)(3,4,7,8-tetramethyl-1,10-phenanthroline)]Cl2 (5). These studies were performed in order to evaluate the stability of the electrogenerated chemical species. An ECi mechanism for all the complexes was proposed and the rate constant value (k1) for the chemical coupled reaction was estimated. The stability is discussed in terms of the rate constant value (k1) and the π*-acceptor properties.  相似文献   

9.
10.
Compound MoO2Cl2(THF)2 reacts with two equivalents of 1,3-dialkyl substituted 4,5-dimethylimidazol-2-ylidenes to give the dioxomolybdenum(VI) complexes MoO2Cl2(LR)2 [R = Me (1), i-Pr (2)]. Treatment of MoO2Cl2(THF)2 with one equivalent of the N-heterocyclic carbenes LMe, Li-Pr and C1Ln-Bu (LMe = 1,3,4,5-tetramethylimidazol-2-ylidene, Li-Pr = 1,3-diisopropyl-4,5-dimethylimidazol-2-ylidene, and C1Ln-Bu = 1,3-dibutyl-4,5-dichloroimidazol-2-ylidene) affords the monocarbene adducts MoO2Cl2(LR) [R = Me (3), i-Pr (4)] and MoO2Cl2(C1Ln-Bu) (5), respectively. Decomposition of complexes 1-5 affords a molybdenum oxychloride anion [Mo2O5Cl4]2− as an imidazolium salt.  相似文献   

11.
Cyclopalladated complexes with the Schiff base N-(benzoyl)-N-(2,4-dimethoxybenzylidene)hydrazine (H2L, 1) have been described. The reaction of 1 with Li2[PdCl4] in methanol yields the complex [Pd(HL)Cl] (2). [Pd(HL)(CH3CN)Cl] (3) has been prepared by dissolving 2 in acetonitrile. In methanol-acetonitrile mixture, treatment of 2 with two mole equivalents of PPh3 produces [PdL(PPh3)] (4) and that with one mole equivalent of PPh3 produces [Pd(HL)(PPh3)Cl] (5). Crystallization of 2 from dmso-d6 results into isolation of [Pd(HL)((CD3)2SO)Cl] (6). In 2, the monoanionic ligand (HL) is C,N,O-donor and the Cl-atom is trans to the azomethine N-atom. In 3, 5 and 6, HL is C,N-donor and the Cl-atom is trans to the metallated C-atom. The remaining fourth coordination site is occupied by the N-atom of CH3CN, the P-atom of PPh3 and the S-atom of (CD3)2SO in 3, 5 and 6, respectively. Thus on dissolution in acetonitrile and dmso and in reaction with stoichiometric PPh3 the incoming ligand imposes a rearrangement of the coordinating atoms on the palladium centre. On the other hand, in presence of excess PPh3 deprotonation of the amide functionality in 2 occurs and the Cl-atom is replaced by the P-atom of PPh3 to form 4. Here the dianionic ligand (L2−) remains C,N,O-donor as in 2. The compounds have been characterized with the help of elemental analysis (C, H, N), infrared, 1H NMR and electronic absorption spectroscopy. Molecular structures of 3, 4, and 6 have been determined by X-ray crystallography.  相似文献   

12.
For N-(thio)phosphorylthioureas of the common formula RC(S)NHP(X)(OiPr)2HLI (R = N-(4′-aminobenzo-15-crown-5), X = S), HLII (R = N-(4′-aminobenzo-15-crown-5), X = O), HLIII (R = PhNH, X = S), HLIV (R = PhNH, X = O), and (N,N′-bis-[C(S)NHP(S)(OiPr)2]2-1,10-diaza-18-crown-6) H2LV, salts LiLI,III,IV, NaLIIV, KLIIVM2LV (M = Li+, Na+, K+), Ba(LI,III,IV)2, and BaLV have been synthesized and investigated. Compounds NaLI,II quantitatively drop out as a deposit in ethanol medium, allowing the separation of Na+ and K+ cations. This effect is not displayed for the other compounds. The crystal structures of HLIII and the solvate of the composition [K(Me2CO)LIII] have been investigated by X-ray crystallography.  相似文献   

13.
(E)-(1,2-Difluoro-1,2-ethenediyl)bis[tributylstannane], 3, readily undergoes a Pd(PPh3)4/CuI-catalyzed cross-coupling reaction with iodotrifluoroethene to yield (E)-octafluoro-1,3,5-hexatriene, 4, in high isomeric purity. (1Z,3E,5Z)-(1,2,3,4,5,6-Hexafluoro-1,3,5-hexenetriyl)bis[tributylstannane], 7, was sequentially prepared from (1Z,3E,5Z)-(1,2,3,4,5,6-hexafluoro-1,3,5-hexenetriyl)bis[triethylsilane], 5, which was prepared via a Pd(PPh3)4/CuI-catalyzed cross-coupling reaction of 3 with (E)-1,2-difluoro-1-iodo-2-triethylsilylethene, 6. Pd(PPh3)4/CuI cross-coupling of 7 with iodotrifluoroethene gave (3E,5E,7E)-dodecafluoro-1,3,5,7,9-decapentaene, 8.  相似文献   

14.
1-Fluoroindan-1-carboxylic acid (FICA) (1) was designed and synthesized as its methyl ester (FICA Me ester) (4) in order to develop an efficient chiral derivatizing agent (CDA) which excels α-methoxy-α-(trifluoromethyl)phenylacetic acid (MTPA) in capability. FICA Me ester (4) was prepared by fluorination of methyl 1-hydroxyindan-1-carboxylate (3) with (diethylamino)sulfur trifluoride (DAST) and derived to the esters of racemic secondary alcohols by ester exchange reaction. The resulting ΔδF value was large in the case of 2-butyl ester of FICA (5a), whereas not detectable in the case of the corresponding MTPA ester (6a). The magnitude of the ΔδH values was similar to that of MTPA esters. The diastereomers of (R)-(−)-8-phenylmenthyl ester of FICA (5i) was separated and their 1H NMR analyses revealed that the concept of the modified Mosher's method was successfully applied to 5i.  相似文献   

15.
The reactivity of (3,5-dimethyl-1H-pyrazol-1-yl)ethyldiphenylphosphine (L) hybrid ligand against Cu(I), Ag(I) and Au(I) has been assayed and compounds [Cu(L)2](PF6) (1), [Ag(L)]2(PF6)2·2C2H4Cl2·2C4H10O (2) and [AuCl(L)]2 (3) have been isolated and fully characterised. A fully characterisation by analytical and spectroscopic methods of 1-3 are presented and X-ray crystal structures of 1 and 2 are also reported. The similar data obtained between 2 and 3 permits to do a serious purpose of the structure of 3 in solid and solution.  相似文献   

16.
Schiff base N,N′-bis(salicylidene)-p-phenylenediamine (LH2) complexed with Pt(en)Cl2 and Pd(en)Cl2 provided [Pt(en)L]2 · 4PF6 (1) and Pd(Salen) (2) (Salen = N,N′-bis(salicylidene)-ethylenediamine), respectively, which were characterized by their elemental analysis, spectroscopic data and X-ray data. A solid complex obtained by the reaction of hexafluorobenzene (hfb) with the representative complex 1 has been isolated and characterized as 3 (1 · hfb) using UV–Vis, NMR (1H, 13C and 19F) data. A solid complex of hfb with a reported Zn-cyclophane 4 has also been prepared and characterized 5 (4 · hfb) for comparison with complex 3. The association of hfb with 1 and 4 has also been monitored using UV–Vis and luminescence data.  相似文献   

17.
The reactions of the trimethylsiloxychlorosilanes (Me3SiO)RR′SiCl (1a-h: R′ = Ph, 1a: R = H, 1b: R = Me, 1c: R = Et, 1d: R = iPr, 1e: R = tBu, 1f: R = Ph, 1g: R = 2,4,6-Me3C6H2 (Mes), 1h: R = 2,4,6-(Me2CH)3C6H2 (Tip); 1i: R = R′ = Mes) with lithium metal in tetrahydrofuran (THF) at −78 °C and in a mixture of THF/diethyl ether/n-pentane in a volume ratio 4:1:1 at −110 °C lead to mixtures of numerous compounds. Dependent on the substituents silyllithium derivatives (Me3SiO)RR′SiLi (2b-i), Me3SiO(RR′Si)2Li (3a-g), Me3SiRR′SiLi (4a-h), (LiO)RR′SiLi (12e, 12g-i), trisiloxanes (Me3SiO)2SiRR′ (5a-i) and trimethylsiloxydisilanes (6f, 6h, 6i) are formed. All silyllithium compounds were trapped with Me3SiCl or HMe2SiCl resulting in the following products: (Me3SiO)RR′SiSiMe2R″ (6b-i: R″ = Me, 7c-i: R″ = H), Me3SiO(RR′Si)2SiMe2R″ (8a-g: R″ = Me, 9a-g: R″ = H), Me3SiRR′SiSiMe2R″ (10a-h: R″ = Me, 11a-h: R″ = H) and (HMe2SiO)RR′SiSiMe2H (13e, 13g-i). The stability of trimethylsiloxysilyllithiums 2 depends on the substituents and on the temperature. (Me3SiO)Mes2SiLi (2i) is the most stable compound due to the high steric shielding of the silicon centre. The trimethylsiloxysilyllithiums 2a-g undergo partially self-condensation to afford the corresponding trimethylsiloxydisilanyllithiums Me3SiO(RR′Si)2Li (3a-g). (Me3)Si-O bond cleavage was observed for 2e and 2g-i. The relatively stable trimethylsiloxysilyllithiums 2f, 2g and 2i react with n-butyllithium under nucleophilic butylation to give the n-butyl-substituted silyllithiums nBuRR′SiLi (15g, 15f, 15i), which were trapped with Me3SiCl. By reaction of 2g and 2i with 2,3-dimethylbuta-1,3-diene the corresponding 1,1-diarylsilacyclopentenes 17g and 17i are obtained.X-ray studies of 17g revealed a folded silacyclopentene ring with the silicon atom located 0.5 Å above the mean plane formed by the four carbon ring atoms.  相似文献   

18.
19.
Shin-ichi Naya 《Tetrahedron》2004,60(41):9139-9148
Ring transformation of 7,9-dimethylcyclohepta[b]pyrimido[5,4-d]furan- 8(7H),10(9H)-dionylium tetrafluoroborate 4+·BF4 to 7,9-dimethylcyclohepta[b]pyrimido[5,4-d]pyrrrole-8(7H),10(9H)-dionylium tetrafluoroborate 6a-d+·BF4 consists of the reaction of 4+·BF4 with amines and subsequent exchange of the counter-ion using aq. HBF4. Reactions of 4+·BF4 with aniline and 4-substituted anilines afforded the corresponding pyrrole derivatives 6a-c+·BF4 directly in good yields. On the other hand, reaction of 4+·BF4 with benzylamine gave the troponeimine intermediate 9, which was not converted to 6d+·BF4 and reverted to 4+·BF4 by adding HBF4; however, it was converted to 6d+·BF4 upon treatment with (COCl)2 or SOCl2, followed by exchange of the counter-ion. In a search for the characteristics of 9, inspection and comparison of the X-ray crystal analyses, NMR and UV-vis spectra, and CV measurement of 9 and N,N-disubstituted troponeimine derivatives 12 were carried out to suggest the remarkable structure of 12 having ionic C-O bonding between the imine-carbon atom and the oxygen atom of the barbituric acid moiety in the solid state. Thus, characteristics of 9 were ascribed to the sterically hindered and favorable conformation of N-protonated troponeimine intermediates. Furthermore, novel photo-induced oxidation reactions of a series of 4+·BF4, 5+·BF4, and 6a,e+·BF4 towards some amines under aerobic conditions were carried out to give the corresponding imines in 455-8362% yields [based on compounds 4+, 5+, and 6a,e+], suggesting the oxidation reaction occurs in an autorecycling process. Mechanistic aspects of the amine-oxidation reaction are also postulated.  相似文献   

20.
Mononuclear complexes of the type, M(CO)4[Se2P(OR)2] (M = Mn, R = iPr, 1a; Et, 1b; M = Re, R = iPr, 3a; Et, 3b) can be prepared from either [-Se(Se)P(OiPr)2]2 (A) or [Se{-Se(Se)P(OEt)2}2] (B) with M(CO)5Br. O,O′-dialkyl diselenophosphate ([(RO)2PSe2]-, abbreviated as dsep) ligands generated from A and B act as a chelating ligand in these complexes. Upon refluxing in acetonitrile, these mononuclear complexes yield dinuclear complexes with a general formula of [M2(CO)6{Se2P(OR)2}2] (M = Mn, R = iPr, 2a; Et, 2b; M = Re, R = iPr, 4a; Et, 4b). Dsep ligands display a triconnective, bimetallic bonding mode in the dinuclear compounds and this kind of connective pattern has never been identified in any phosphor-1,1-diselenoato metal complexes. Compounds 2b, 3b, and 4 are structurally characterized. Compounds 2b and 3b display weak, secondary Se?Se interactions in their lattices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号