首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of cis-bis{5-[(E)-2-(aryl)-1-diazenyl]quinolinolato}diphenyltin(IV) complexes have been synthesized and characterized by 1H, 13C, 119Sn NMR, ESI-MS, IR and 119mSn Mössbauer spectroscopic techniques in combination with elemental analysis. The structures of a ligand L6H (i.e., 5-[(E)-2-(4-ethoxyphenyl)-1-diazenyl]quinolin-8-ol) and three diphenyltin(IV) complexes, viz., Ph2Sn(L1)2 · (CH3)2CO (1), Ph2Sn(L4)2 (4) and Ph2Sn(L5)2 (5) (L = 5-[(E)-2-(aryl)-1-diazenyl]quinolin-8-ol: aryl = phenyl - (L1H); 4′-methylphenyl - (L4H) and 4′-bromophenyl - (L5H)) were determined by single crystal X-ray diffraction. In general, the complexes were found to adopt a distorted cis-octahedral arrangement around the tin atom. These complexes retain their solid-state structure in non-coordinating solvent as evidenced by 119Sn NMR spectroscopic results. The in vitro cytotoxicity of 1 is reported and compared with Ph2Sn(Ox)2 (Ox = deprotonated quinolin-8-ol) against seven well characterized human tumor cell lines.  相似文献   

2.
A series of dibutylbis{5-[(E)-2-(aryl)-1-diazenyl]-2-hydroxybenzoato}tin(IV) complexes, Bu2Sn(LH)2, have been prepared and characterized by 1H, 13C, 119Sn NMR and ESI mass spectrometry in solution. The structures of the complexes Bu2Sn(L1H)2 (1), Bu2Sn(L3H)2 (3), Bu2Sn(L4H)2 (4), and Bu2Sn(L6H)2 (6) (L = 5-[(E)-2-(aryl)-1-diazenyl]-2-hydroxybenzoate: aryl = phenyl (L1H), 3-methylphenyl (L3H), 4-methylphenyl (L4H) and 4-bromophenyl (L6H)) were determined by X-ray crystallography and 117Sn CP-MAS NMR spectroscopy in the solid state. In general, the complexes were found to adopt a skew-trapezoidal bipyramidal arrangement around the tin atom. In addition, there are weak bridging intermolecular Sn?O contacts in complexes 1 and 3, but not in 4 and 6, where one of the hydroxy oxygen atoms from a neighboring molecule coordinates weakly with the Sn atom, thereby completing a seventh coordination site in the extended Sn coordination sphere. The Sn?O distance is 3.080(2) and 3.439(2) Å in 1 and 3, respectively, which are significantly shorter than the sum of the van der Waals radii of the Sn and O atoms (∼3.8 Å). In 1, this Sn?O interaction links the molecules into polymeric chains. In 3, these interactions link pairs of molecules into head-to-head dimeric units. The in vitro cytotoxicity of compound 2 indicates better results than cisplatin and etoposide against seven well characterized human tumor cell lines.  相似文献   

3.
Reactions of nBu2SnCl(L1) (1), where L1 = acid residue of 5-[(E)-2-(4-methoxyphenyl)-1-diazenyl]quinolin-8-ol, with various substituted benzoic acids in refluxing toluene, in the presence of triethylamine, yielded dimeric mixed ligand di-n-butyltin(IV) complexes of composition [nBu2Sn(L1)(L2-6)]2 where L2 = benzene carboxylate (2), L3 = 2-[(E)-2-(2-hydroxy-5-methylphenyl)-1-diazenyl]benzoate (3), L4 = 5-[(E)-2-(4-methylphenyl)-1-diazenyl]-2-hydroxybenzoate (4), L5 = 2-{(E)-4-hydroxy-3-[(E)-4-chlorophenyliminomethyl]-phenyldiazenyl}benzoate (5) and L6 = 2-[(E)-(3-formyl-4-hydroxyphenyl)-diazenyl]benzoate (6). All complexes (1-6) have been characterized by elemental analyses, IR, 1H, 13C and 117Sn NMR and 119Sn Mössbauer spectroscopy and their structures were determined by X-ray crystallography, complemented by 117Sn CP-MAS NMR spectroscopy studies in the solid state. The crystal structure of 1 reveals a distorted trigonal bipyramidal coordination geometry around the Sn-atom where the Cl- and N-atoms of ligand L1 occupy the axial positions. In complexes 2-5, the molecules are centrosymmetric dimers in which the Sn-atoms are connected by asymmetric μ-O bridges through the quinoline O-atom to give an Sn2O2 core. The differences in the Sn-O bond lengths within the bridge range from 0.28 to 0.48 Å, with the longer of the Sn-O distances being in the range 2.56-2.68 Å and the most symmetrical bridge being in 5. The carboxylate group is almost symmetrically bidentate coordinated to the tin atom in 5 (Sn-O distances of 2.327(2) and 2.441(2) Å), unlike the other complexes in which the distance of the carboxylate carbonyl O-atom from the tin atom is in the range 2.92-3.03 Å. The structure of 5 displays a more regular pentagonal bipyramidal coordination geometry about each tin atom than in 2-4. In contrast, the centrosymmetric dimeric structure of 6 involves asymmetric carboxylate bridges, resulting in a different Sn2C2O4 motif. The Sn-O bond lengths in the bridge differ by about 0.6 Å, with the longer distance involving the carboxylate carbonyl O-atom (2.683(2) and 2.798(2) Å for two molecules in the asymmetric unit). The carboxylate carbonyl O-atom has a second, even longer intramolecular contact to the Sn-atom to which the carboxylate group is primarily coordinated, with these Sn?O distances being as high as 3.085(2) and 2.898(2) Å. If the secondary interactions are considered, all the di-n-butyltin(IV) complexes (2-6) display a distorted pentagonal bipyramidal arrangement about each tin atom in which the n-butyl groups occupy the axial positions.  相似文献   

4.
Reactions of sodium 5-[(E)-2-(aryl)-1-diazenyl]quinolin-8-olates (LH, where the aryl group is an R-substituted phenyl ring such that for L1H: R = H; L2H: R = 2′-CH3; L3H: R = 3′-CH3; L4H: R = 4′-CH3; L5H: R = 4′-OCH3 and L6H: R = 4′-OC2H5) with Ph3SnCl in a 1:1 molar ratio yielded complexes of composition Ph3SnL. The complexes have been characterized by 1H, 13C, 119Sn NMR, IR and 119mSn Mössbauer spectroscopic techniques in combination with elemental analyses. The crystal structures of Ph3SnL1 · 0.5C6H6 (1), Ph3SnL2 (2), Ph3SnL5 · C6H6 (5) and Ph3SnL6 · 0.5C6H6 (6) were determined. The results of the X-ray studies indicated that the benzene solvated compounds 1, 5 and 6 are distorted square pyramid, with one of the phenyl C atoms in the apex while the ligand arrangement around central Sn atom in 2 is distorted trigonal-bipyramidal, with a phenyl C and the oxinato N atoms in axial positions.  相似文献   

5.
Reactions of 5-[(E)-2-(aryl)-1-diazenyl]-2-hydroxybenzoic acids (LHH′, where the aryl group is an R-substituted phenyl ring such that for L1HH′: R = H; L2HH′: R = 2′-CH3; L3HH′: R = 3′-CH3; L4HH′: R = 4′-CH3; L5HH′: R = 4′-Cl; L6HH′: R = 4′-Br) with nBu2SnO in a 1:1 molar ratio yielded complexes of composition {[nBu2Sn(LH)]2O}2. The complexes have been characterized by 1H, 13C, 119Sn NMR, ESI-MS, IR and 119mSn Mössbauer spectroscopic techniques in combination with elemental analyses. The crystal structures of {[nBu2Sn(L1H)]2O}2 (1), {[nBu2Sn(L4H)]2O}2 (4), {[nBu2Sn(L5H)]2O}2 (5) and {[nBu2Sn(L6H)]2O}2 (6) were determined. The compounds are centrosymmetric tetranuclear bis(dicarboxylatotetrabutyldistannoxane) complexes containing a planar Sn4O2 core in which two μ3-oxo O-atoms connect an Sn2O2 ring to two exocyclic Sn-atoms. The four carboxylate ligands display two different modes of coordination where both modes involve bridging of two structurally distinct Sn-atoms. The solution structures were confirmed by 119Sn NMR spectroscopy by observing two tin resonances in compounds 1, and 4-6. The observed difference between the two tin resonances was about 3 ppm while the differences in 13C resonances were even smaller. Compounds {[nBu2Sn(L2H)]2O}2 (2) and {[nBu2Sn(L3H)]2O}2 (3) undergo a very complex exchange processes in deuteriochloroform solution. The in vitro cytotoxic activity of compounds 1 and 4 against WIDR, M19 MEL, A498, IGROV, H226, MCF7 and EVSA-T human tumour cell lines is reported.  相似文献   

6.
Three diorganotin(IV) complexes of the type, [R2Sn(LaH)(LbH)] (R = nBu or Me and, LaH and LbH are two different 5-[(E)-2-(aryl)-1-diazenyl]-2-hydroxybenzoate residues; a: aryl = 4′-Cl-(held constant) and b: aryl = 4′-Me or 4′-Br) have been prepared either by reacting nBu2SnO, LaHH′ and LbHH′ (1:1:1) in anhydrous toluene or by reacting Me2SnCl2, LaHNa and LbHNa (1:1:1) in anhydrous methanol. The products were characterized by microanalysis, IR, NMR (1H, 13C, 119Sn) and 119mSn Mössbauer spectroscopy. A full characterization of the structures of the complexes [nBu2Sn(LaH)(LbH)] (1 and 2) and [Me2Sn(LaH)(LbH)] (3) in the solid state were accomplished by single crystal X-ray crystallography. These complexes were found to adopt the usual dicarboxylato structural type with a skew-trapezoidal bipyramidal arrangement around the tin atom.  相似文献   

7.
Reactions of 5-[(E)-2-(aryl)-1-diazenyl]-2-hydroxybenzoic acids (LHH′, where the aryl group is an R-substituted phenyl ring such that for L1HH′: X = H; L2HH′: X=2′-OCH3; L3HH′: X = 3′-CH3; L4HH′: X = 4′-CH3; L5HH′:X = 4′-Cl) with nOct2SnO in 2:1 and 1:1 molar ratios have been investigated. Two types of complexes, nOct2Sn(LH)2 and {[nOct2Sn(LH)]2O}2, were isolated and they have been characterized by 1H, 13C, 119Sn NMR, ESI-MS, IR and 119mSn Mössbauer spectroscopic techniques in combination with elemental analyses. The crystal structures of nOct2Sn(L1H)2 (1), {[nOct2Sn(L2H)]2O}2 (3) and {[nOct2Sn(L3H)]2O}2(4) were determined. The mononuclear complex 1 was found to adopt a skew-trapezoidal bipyramidal arrangement around the tin atom while 3 and 4 are centrosymmetric tetranuclear bis(dicarboxylatotetrabutyldistannoxane) complexes containing a planar Sn4O2 core in which two μ3-oxo O-atoms connect an Sn2O2 ring to two exocyclic Sn-atoms. The solution structures were confirmed by 119Sn NMR spectroscopy by observing one tin resonance in compound 1 and two tin resonances in {[nOct2Sn(L5H)]2O}2 (5). {[nOct2Sn(L2H)]2O}2 (3) and {[nOct2Sn(L3H)]2O}2 (4) undergo very complex exchange processes in deuteriochloroform solution, which has been confirmed by variable temperature 1H NMR spectroscopy. The cleavage of the most labile bond in the molecule was studied by ESI mass spectrometry.  相似文献   

8.
The triphenyltin(IV) complexes of 4-[((E)-1-{2-hydroxy-5-[(E)-2-(2-carboxyphenyl)-1-diazenyl]phenyl}methylidene)amino]aryls (aryls = 4-CH3, 4-Br, 4-Cl, 4-OCH3) have been synthesized and characterized by 1H-, 13C-, 119Sn-NMR, ESI mass spectrometry, IR and 119mSn Mössbauer spectroscopic techniques in combination with elemental analysis. The crystal structures of a representative carboxylate ligand (aryl = 4-CH3) and three Sn complexes, viz., polymeric (Ph3Sn[O2CC6H4{NN(C6H3-4-OH(C(H)NC6H4X-4))}-o])n (X = Me (1) and Br (2)) and dimeric (Ph3Sn[O2CC6H4{NN(C6H3-4-OH(C(H)NC6H4X-4))}-o])2 (X = OMe (4)) complexes are reported. The coordination environment in each complex is trigonal bipyramidal trans-Ph3SnO2. A single zwitterionic carboxylate ligand bridges adjacent Sn atoms via the carboxylate and phenoxide O atoms.  相似文献   

9.
Diorganotin(IV) complexes, [SnR2L] (1)-(4), (R = Me, Ph), of the terdentate Schiff bases N-[(2-pyrroyl)methylidene]-N′-tosylbenzene-1,2-diamine (H2L1) and N-[(2-hydroxyphenyl)metylidene]-N′-tosylbenzene-1,2-diamine (H2L2) have been synthesised. The complexes were obtained by addition of the appropriate ligand to a methanol suspension of the corresponding diorganotin(IV) dichloride in the presence of triethylamine. However, the reaction between the precursor [η5-C5H5Fe(CO)2]2SnCl2 and the Schiff bases in the presence of triethylamine gave (5) and (6), respectively. The crystal structures of the ligands and complexes have been studied by X-ray diffraction. The structure of [SnR2L] complexes shows the tin to be five-coordinate in a distorted square pyramidal environment with the dianionic ligand acting in a terdentate manner. In 5 and 6, the iron atom is in a slightly distorted octahedral environment and is meridionally coordinated by two ligands. Spectroscopic data for the ligands and complexes (IR, 1H, 13C and 119Sn NMR and mass spectra) are discussed and related to the structural information.  相似文献   

10.
Mononuclear, square-planar platinum(II) complexes involving derivatives of aromatic cytokinins as the ligands, and having the general formula cis-[Pt(Ln)2Cl2] (13) and trans-[Pt(Ln)2Cl2] (46), where n = 1–3, L1 = 2-chloro-6-(benzylamino)-9-isopropylpurine, L2 = 2-chloro-6-[(4-methoxybenzyl)amino]-9-isopropylpurine and L3 = 2-chloro-6-[(2-methoxybenzyl)-amino]-9-isopropylpurine, have been synthesized and characterized by elemental analysis, MALDI-TOF mass, FT IR, 1H, 13C, 15N and 195Pt NMR spectral measurements. Dynamic cis-to-trans isomerization process of complex 1 in N,N′-dimethylformamide (DMF) has been investigated by means of multinuclear NMR spectroscopy. The solid-state structures of 1, 4 · (DMF)2, and 5 have been determined by single crystal X-ray analysis. X-ray structures revealed that the heterocyclic ligands are coordinated to platinum via nitrogen atom N(7) in all the complexes studied. In vitro cytotoxicity of the prepared complexes against MCF7, G361, K562, and HOS has been evaluated. Owing to low solubility of the complexes in water, the cytotoxicity has been only tested up to 5 μM concentration. Unfortunately, all complexes have been found to be non-cytotoxic in the accessible concentration range.  相似文献   

11.
A set of C,N-chelated organotin(IV) ferrocenecarboxylates, [LCN(n-Bu)Sn(O2CFc)2] (1), [(LCN)2Sn(O2CFc)2] (2), [LCN(n-Bu)Sn(O2CCH2Fc)2] (3), [LCN(n-Bu)Sn(O2CCH2CH2Fc)2] (4), [LCN(n-Bu)Sn(O2CCHCHFc)2] (5), [LCN(n-Bu)Sn(O2CfcPPh2)2] (6), [(LCN)2Sn(O2CfcPPh2)2] (7), and [LCN(n-Bu)2Sn(O2CFc)] (8) (LCN = 2-(N,N-dimethylaminomethyl)phenyl, Fc = ferrocenyl and fc = ferrocene-1,1′-diyl) has been synthesized by metathesis of the respective organotin(IV) halides and carboxylate potassium salts and characterized by multinuclear NMR and IR spectroscopy. The spectral data indicated that the tin atoms in diorganotin(IV) dicarboxylates bearing one C,N-chelating ligand (1 and 3-6) are seven-coordinated with a distorted pentagonal bipyramidal environment around the tin constituted by the n-butyl group, the chelating LCN ligand and bidentate carboxylate. Compounds 2 and 7 possessing two chelating LCN ligands comprise octahedrally coordinated tin atoms and monodentate carboxylate donors, whereas compound 8 assumes a distorted trigonal bipyramidal geometry around tin with the carboxylate binding in unidentate fashion. The solid state structures determined for 1⋅C6D6 and 2 by single-crystal X-ray diffraction analysis are in agreement with spectroscopic data. Compounds 1, 3-5, and 8 were further studied by electrochemical methods. Whereas the oxidations of ferrocene units in bis(carboxylate) 2 and monocarboxylate 8 proceed in single steps, compound 1 undergoes two closely spaced one-electron redox waves due to two independently oxidized ferrocenyl groups. The spaced analogues of 2, compounds 3-5, again display only single waves corresponding to two-electron exchanged.  相似文献   

12.
Six new chiral triorganotin(IV) complexes, {(R3Sn)2[C3H6(COO)2]}n (R = Me: 1; Bu: 2), {(R3Sn)2[C4H8(COO)2]}n (R = Me: 3; Bu: 4), and {(R3Sn)2[C2H4O(COO)2]}n (R = Me: 5; Bu: 6) have been prepared by treatment of (R)-(+)-methylsuccinic acid, (S)-(+)-methylglutaric acid and l-(−)-malic acid, with the corresponding R3SnCl (R = Me, Bu) and sodium ethoxide in methanol. All the complexes were characterized by elemental analysis, FT-IR, NMR (1H, 13C, 119Sn) spectroscopy and TGA. Except for 3, all of the complexes were also characterized by X-ray crystallography. The structural analyses reveal that complexes 1 and 5 have 2D network structures in which (R)-(+)-methylsuccinic acid and l-(−)-malic acid act as tetradentate ligands coordinated to trimethyltin(IV) ions. Complexes 2 and 4 have 3D metal-organic framework structures in which the deprotoned acids serve as tetradentate ligands. Complex 6 adopts a 1D zigzag chain structure and forms a 2D supramolecular framework through intermolecular C-H?O interactions. In addition, the antitumor activities of complexes 1-6 have been studied. We also have measured the specific rotation of the chiral dicarboxylic acids and the organotin derivatives.  相似文献   

13.
Reactions of 2-(1H-benzimidazol-2-yl)phenol (1) and SnPh3Cl, SnPh2Cl2 and SnCl4 were investigated. One tetracoordinated triphenyltin(IV) compound: triphenyltin-2-(1H-benzimidazol-2-yl)phenolate] (3) and its adducts: [O → Sn] dimethylsulfoxide triphenyltin-[2-(1H-benzimidazol-2-yl)phenolate] (4), [O → Sn] aqua triphenyltin-[2-(1H-benzimidazol-2-yl)phenolate] (5) [O → Sn] ethanol triphenyltin-[2-(1H-benzimidazol-2-yl)phenolate] (6), [N → Sn] pyridine triphenyltin-[2-(1H-benzimidazol-2-yl)phenolate] (7), where 1 acts as a monodentate ligand bound through the phenol oxygen, were obtained. In the pentacoordinated compounds 4-7, the tin atom has tbp geometry. The three phenyl groups are in equatorial positions, whereas the benzimidazole and the Lewis base are in apical positions. Two hexacoordinated tin compounds: diphenyltin-bis[2-(1H-benzimidazol-2-yl-κN)phenolate-κO] (8), dichlorotin-bis[2-(1H-benzimidazol-2-yl-κN)phenolate-κO] (9) bearing two bidentate ligands are reported. The coplanar ligands in 8 and 9 form six membered rings by oxygen and nitrogen coordination. The tin geometry is all-trans octahedral. In 8 the two phenyl groups, and in 9 the two chlorine atoms are perpendicular to the plane of the ligands. Compounds were identified in solution mainly by 1H, 13C and 119Sn NMR and in the solid state by X-ray diffraction analysis.  相似文献   

14.
Three new diorganotin(IV) complexes of the general formula R2Sn[3-(OMe)-2-OC6H3CHN-NC(O)Ph] (R = Ph, Ia; R = Me, Ib; R = n-Bu, Ic) have been synthesised from the corresponding diorganotin(IV) dichlorides and the ligand, N′-(2-hydroxy-3-methoxybenzylidene)benzohydrazide in methanol at room temperature in the presence of trimethylamine. All the complexes have been characterized by elemental analysis, IR and 1H, 13C, 15N, 119Sn NMR spectra, and their structures have been confirmed by single crystal X-ray diffraction analysis of one representative compound Ia. Complex Ia crystallises in the orthorhombic system, space group Pna21 with a = 12.424(5), b = 9.911(5), c = 18.872(5) Å; Z = 4. The ligand N′-(2-hydroxy-3-methoxybenzylidene)benzohydrazide (H2L) coordinates to the metal centre in the enolate form via the phenolic O, imino N and enolic O atoms. In Ia, the central tin atom adopts a distorted trigonal bipyramidal coordination geometry with the oxygen atoms in axial positions, while the imino nitrogen atom of the Schiff base and the two phenyl groups occupy the equatorial sites. The δ(119Sn) values for the complexes Ia, Ib and Ic are −327.3, −151.7 and −187.2 ppm, respectively, thus indicating penta-coordinated Sn centres in solution.  相似文献   

15.
The complex, [(PhCH2)2{O2CC6H4{N(H)N(C6H3-4(O)-5-O)}-o}Sn]2 (1), is obtained as the exclusive reaction product from the reaction of sodium 2-[(E)-2-(3-formyl-4-hydroxyphenyl)-1-diazenyl]benzoate and (PhCH2)3SnCl. The reaction possibly proceeds via Dakin type rearrangements where arylazosalicylaldehyde is oxidized to arylazocatechol, followed by facile Sn-C bond cleavage. Complete assignments were achieved by 1H, 13C, 2D 1H-119Sn HMQC (119Sn chemical shift), 1D gs 1H-15N HMQC (1J(15N, 1H) coupling constant) NMR and ESI-MS. The crystal structure of compound 1 as determined by X-ray diffraction analyses shows a cyclic centrosymmetric dinuclear moiety linked into extended chains by pairs of long Sn?O contacts of approximately 3.2 Å. Two polymorphs were identified and their structures differ primarily in the packing arrangement afforded by the benzyl groups. In one polymorph, when viewed along the Sn?Sn vector, the benzyl groups at each Sn-atom are oriented to form an S-shape, while they form a U-shape in the second polymorph.  相似文献   

16.
The set of starting tri-, di- and monoorganotin(IV) halides containing N,C,N-chelating ligand (LNCN = {1,3-[(CH3)2NCH2]2C6H3}) has been prepared (1-5) and two compounds structurally characterized ([LNCNPh2Sn]+I3 (1c), LNCNSnBr3 (5)) in the solid state. These compounds were reacted with KF with 18-crown-6, NH4F or LCNnBu2SnF to give derivatives containing fluorine atom(s). Triorganotin(IV) fluorides LNCNMe2SnF (2a) and LNCNnBu2SnF (3a) revealed monomeric structural arrangement with covalent Sn-F bond both in the coordinating and non-coordinating solvents, except the behaviour of 3a that was ionized in the methanol solution at low temperature. The products of fluorination of LNCNSnPhCl2 (4) and 5 were described by NMR in solution as the ionic hypervalent fluorostannates or the oligomeric species reacting with chloroform, methanol or moisture to zwitterionic monomeric stannate LNCN(H)+SnF4 (5c), which was confirmed by XRD analysis in the solid state.  相似文献   

17.
Min Shi  Guo-Qiang Tian  Jia Li 《Tetrahedron》2009,65(17):3404-8834
In the presence of Pd(II) acetate and triethylamine as well as triphenylphosphine, 2-(arylmethylene)cyclopropylcarbinols 1 underwent ring opening and oxidation reactions smoothly to deliver (2E,4E)-5-arylpenta-2,4-dienals 2 in toluene at 60 °C in moderate to good yields under ambient atmosphere. Mechanisms involved with an in situ generated Pd(0) species from Pd(II) and Et3N or PPh3 catalyzed isomerization of 1 to provide (E,E)-5-arylpenta-2,4-dien-1-ols 3 and following a Pd(II) catalyzed aerobic oxidation of 3 have been proposed on the basis of control and deuterium labeling experiments.  相似文献   

18.
The reactions of N-(aryl)pyridine-2-aldimines (L-R; R = OCH3, CH3, H, Cl and NO2), derived from pyridine-2-aldehyde and para-substituted anilines, with CuI in methanol under ambient conditions afford a series of brown complexes of the type [{Cu(L-R)I}2]. The structure of the [{Cu(L-OCH3)I}2] complex has been determined by X-ray crystallography. In these dimeric complexes the two copper centers are linked through an iodo-bridge, and the L-R ligands are coordinated to the metal center through the pyridine-nitrogen and imine-nitrogen. All the complexes show characteristic 1H NMR signals and intense MLCT transitions in the visible region. These complexes also show an emission near 465 nm, whilst they are excited at 340 nm, with relatively poor quantum yields (φ ∼0.002 at 298 K). Cyclic voltammetry on all the complexes shows two successive Cu(I)-Cu(II) oxidations on the positive side of SCE, and a reduction of the coordinated imine ligand on the negative side. These copper(I) complexes are found to efficiently catalyze Suzuki type C-C coupling reactions.  相似文献   

19.
The C,N-(trimethylsilyliminodiphenylphosphoranyl)silylmethylmetal complexes [Fe(L)2] (3), [Co(L)2] (4), [ZrCl3(L)]·0.83CH2Cl2 (5), [Fe(L)3] (6), [Fe(L′)2] (7) and [Co(L′)2] (8) have been prepared from the lithium compound Li[CH(SiMe2R)P(Ph)2NSiMe3] [1a, (R = Me) {≡ Li(L)}; 1b, (R = NEt2) {≡ Li(L′)}] and the appropriate metal chloride (or for 7, FeCl3). From Li[N(SiMe3)C(Ph)C(H)P(Ph)2NSiMe3] [≡ Li(L″)] (2), prepared in situ from Li(L) (1a) and PhCN, and CoCl2 there was obtained bis(3-trimethylsilylimino- diphenylphosphoranyl-2-phenyl-N-trimethylsilyl-1-azaallyl-N,N)cobalt(II) (9). These crystalline complexes 3-9 were characterised by their mass spectra, microanalyses, high spin magnetic moments (not 5) and for 5 multinuclear NMR solution spectra. The X-ray structure of 3 showed it to be a pseudotetrahedral bis(chelate), the iron atom at the spiro junction.  相似文献   

20.
Four cyclometalated Pt(II) complexes, i.e., [(L2)PtCl] (1b), [(L3)PtCl] (1c), [(L2)PtCCC6H5] (2b) and [(L3)PtCCC6H5] (2c) (HL2 = 4-[p-(N-butyl-N-phenyl)anilino]-6-phenyl-2,2′-bipyridine and HL3 = 4-[p-(N,N′-dibutyl-N′-phenyl)phenylene-diamino]-phenyl-6-phenyl-2,2′-bipyridine), have been synthesized and verified by 1H NMR, 13C NMR and X-ray crystallography. Unlike previously reported complexes [(L1)PtCl] (1a) and [(L1)PtCCC6H5] (2a) (HL1 = 4,6-diphenyl-2,2′-bipyridine), intense and continuous absorption bands in the region of 300-500 nm with strong metal-to-ligand charge transfer (1MLCT) (dπ(Pt) → π(L)) transitions (ε ∼ 2 × 104 dm3 mol−1 cm−1) at 449-467 nm were observed in the UV-Vis absorption spectra of complexes 1b, 1c, 2b and 2c. Meanwhile, with the introduction of electron-donating arylamino groups in the ligands of 1a and 2a, complexes 1b and 2b display stronger phosphorescence in CH2Cl2 solutions at room temperature with bathochromically shifted emission maxima at 595 and 600 nm, relatively higher quantum yields of 0.11 and 0.26, and much longer lifetimes of 8.4 and 4.5 μs, respectively. An electrochromic film of 1b-based polymer was obtained on Pt or ITO electrode surface, which suggests an efficient oxidative polymerization behavior. An orange multilayer organic light-emitting diode with 1b as phosphorescent dopant was fabricated, achieving a maximum current efficiency of 11.3 cd A−1 and a maximum external efficiency of 5.7%. The luminescent properties of complexes 1c and 2c are dependent on pH value and solvent polarity, which is attributed to the protonation of arylamino units in the C^N^N cyclometalating ligands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号