首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The mono(guanidinate) lanthanide borohydride complexes of [(Me3Si)2NC(NCy)2]Ln(BH4)2(THF)2 (Ln = Yb (1), Er (2)) have been synthesized by the reactions of corresponding Ln(BH4)3(THF)3 with sodium guanidinate of [(Me3Si)2NC(NCy)2]Na in a 1:1 molar ratio in THF. They were characterized by elemental analysis, infrared spectrum and X-ray diffraction analysis. 1 and 2 have similar structures. The lanthanide ion was bonded by an η2-guanidinate ligand, two η3-BH4 ligands and two THF molecules as a distorted octahedron. The two BH4 ligands in a complex are equivalent and cis to each other. The structure of solvated sodium guanidinate of {[(Me3Si)2NC(NCy)2]Na(THF)}2 (3) was also presented. In a dimeric molecule of 3, each Na atom is bound to three nitrogen atoms from two guanidinate groups and one oxygen atom from the THF molecule. 1 and 2 displayed moderate high catalytic activity for the polymerization of methyl methacrylate. The Er complex is more active than the Yb complex.  相似文献   

2.
The yttrium chloride with the bridged bis(amidinate) L (L = Me3SiNC(Ph)N(CH2)3NC(Ph)NSiMe3) LYCl(DME) (2) was synthesized and structurally characterized. Treatment of LLnCl(sol)x (Ln = Yb, sol = THF, x = 2 1; Ln = Y, sol = DME, x = 1 2) with the dilithium salt Li2L(THF)0.5 afforded the novel bimetallic lanthanide complexes supported by three ligands, Ln22-L)3 · DME (Ln = Yb 3, Y 4; DME = dimethylether), instead of the designed complex LLn(μ2-L)LnL via the ligand redistribution reaction. Complexes 3 and 4 were fully characterized including X-ray analysis and 1H NMR spectrum for 4. Reaction of LnCl3 (Ln = Yb, Y) with 2 equiv. of Li2L(THF)0.5 gave the anionic complexes [Li(DME)3][L2Ln] (Ln = Yb 5, Y 6), which were confirmed by a crystal structure determination. The further study indicated that complexes 3 and 4 can also be synthesized by reaction of LnCl3 (Ln = Yb, Y) with 1.5 equiv. of Li2L(THF)0.5 or reaction of 1 and 2 with anionic complexes 5 and 6. Complexes 3, 4, 5 and 6 were found to be high active catalysts for ring-opening polymerization of ε-caprolactone (CL).  相似文献   

3.
Two series of new organolanthanide(II) complexes with general formula {η51-[1-R-3-(2-C5H4NCH2)C9H5]}2Ln(II) (R = H-, Ln = Yb (3), Eu (4); R = Me3Si-, Ln = Yb (5), Eu (6)), and {η51-[1-R-3-(3-C5H4NCH2)C9H5]}2Ln(II) (R = H-, Ln = Yb (9), Eu (10); R = Me3Si-, Ln = Yb (11), Eu (12)) were synthesized by silylamine elimination with one-electron reductive reactions of lanthanide(III) amides [(Me3Si)2N]3Ln(μ-Cl)Li(THF)3 (Ln = Yb, Eu) with 2 equiv. 1-R-3-(2-C5H4NCH2)C9H6 (R = H (1), Me3Si- (2)) or 1-R-3-(3-C5H4NCH2)C9H6 (R = H (7), Me3Si- (8)) in good yields. All the complexes were fully characterized by elemental analyses and spectroscopic methods. Complexes 3 and 5 were additionally characterized by single-crystal X-ray diffraction study. The catalytic activities of the complexes for MMA polymerization were examined. It was found that complexes with 3-pyridylmethyl substituent on the indenyl ligands could function as single-component MMA polymerization catalysts with good activities, while the complexes with 2-pyridylmethyl substituent on the indenyl ligands cannot catalyze MMA polymerization. The temperatures and solvents effect on the MMA polymerization have also been examined.  相似文献   

4.
A series of homoleptic lanthanide guanidinate (guan)3Ln · ((C2H5)2O)n (Ln=Yb, n=1 guan=(CyN)2CNiPr2, (1); Ln=Nd, n=0, guan=(CyN)2CNiPr2, (2); (iPrN)2CNiPr2, (3); (iPrN)2CN(CH2)5, (4)); (iPr=isopropyl, Cy=Cyclohexyl) were synthesized by the reaction of THF solution of lithium guanidinate with anhydrous lanthanide trichlorides in THF in 3:1 molar ratio. The molecular structures of 2 and 3 were determined to be monomeric in solid state with a six coordinate lanthanide metal ligated by six nitrogens of three guanidinate groups. All the complexes exhibited extremely high activity for the ring-opening polymerization of ε-caprolactone and the polymerization gave the polymers with high molecular weights. The different substituents at guanidino ligands have great effect on the catalytic activity. The mechanism of the polymerization was presented.  相似文献   

5.
The synthesis of lanthanide hydroxo complexes stabilized by a carbon-bridged bis(phenolate) ligand 2,2’-methylene-bis(6-tert-butyl-4-methylphenoxo) (MBMP2−) was described, and their reactivity toward phenyl isocyanate was explored. Reactions of (MBMP)Ln(C5H5)(THF)2 with a molar equiv. of water in THF at −78 °C afforded the bis(phenolate) lanthanide hydroxides as dimers [{(MBMP)Ln(μ-OH)(THF)2}2] [Ln = Nd (1), Yb (2)] in high yields. Complexes 1 and 2 reacted with phenyl isocyanate in THF, after workup, to give the desired O−H addition products, [(MBMP)Ln(μ-η12-O2CNHPh)(THF)2]2 [Ln = Nd (3), Yb (4)] in excellent isolated yields. These complexes were well characterized, and the molecular structures of complexes 2 to 4 were determined by X-ray crystallography. The ytterbium atom in complex 2 is coordinated to six oxygen atoms to form a distorted octahedral geometry, whereas each metal center in complexes 3 and 4 is seven-coordinated, and the coordination geometry can be best described as a distorted pentagonal bipyramid.  相似文献   

6.
Reaction of 3-(2-pyridylmethyl)indenyl lithium (1) with LnI2(THF)2 (Ln = Sm, Yb) in THF produced the divalent organolanthanides (C5H4NCH2C9H6)2LnII(THF) (Ln = Sm (2), Yb (3)) in high yield. 1 reacts with LnCl3 (Ln = Nd, Sm, Yb) in THF to give bis(3-(2-pyridylmethyl)indenyl) lanthanide chlorides (C5H4NCH2C9H6)2LnIIICl (Ln = Nd (4), Sm (5)) and the unexpected divalent lanthanides 3 (Ln = Yb). Complexes 2-5 show more stable in air than the non-functionalized analogues. X-ray structural analyses of 2-4 were performed. 2 and 3 belong to the high symmetrical space group (Cmcm) with the same structures, they are THF-solvated 9-coordinate monomeric in the solid state, while 4 is an unsolvated 9-coordinate monomer with a trans arrangement of both the sidearms and indenyl rings in the solid state. Additionally, 2 and 3 show moderate polymerization activities for ε-caprolactone (CL).  相似文献   

7.
A series of new titanium complexes bearing β-diiminato ligands [(Ph)NC(R1)CHC(R2)N(Ph)]2TiCl2 (4a: R1 = R2 = CH3; 4b: R1 = R2 = CF3; 4c: R1 = Ph, R2 = CH3; 4d: R1 = Ph, R2 = CF3) has been synthesized and characterized. X-ray crystal structures reveal that complexes 4a and 4c adopt distorted octahedral geometry around the titanium center. With modified methylaluminoxane (MMAO) as a cocatalyst, complexes 4a-d are active catalysts for ethylene polymerization, and produce high molecular weight polyethylenes. Catalyst activities and the molecular weights of polymers are considerably influenced by the steric and electronic effects of substituents on the catalyst backbone under the same polymerization condition. With the strong electron-withdrawing groups (CF3) at R1 or/and R2 position, complexes 4b and 4d show higher activities than complexes 4a and 4c, respectively.  相似文献   

8.
Phosphorous-bridged bisphenoxy titanium complexes were synthesized and their ethylene polymerization behavior was investigated. Bis[3-tert-butyl-5-methyl-2-phenoxy](phenyl)phosphine tetrahydrofuran titanium dichloride (4a) was obtained by treatment of 3 equiv of n-BuLi with bis[3-tert-butyl-2-hydroxy-5-methylphenyl](phenyl)phosphine hydrochloride salt (3a) followed by TiCl4(THF)2 in THF. THF-free complexes 5a-5d were synthesized more conveniently by the direct reaction of MOM-protected ligands (2a-2d) with TiCl4 in toluene. X-ray analysis of 4a revealed that the ligand is bonded to the octahedral titanium (IV) center in a facial fashion and two chlorine atoms possess cis-geometry. Complexes 4a and 5a-5d were utilized as catalyst precursors for ethylene polymerization. Complex 5c gave high molecular weight polyethylene (Mw = 1,170,000, Mw/Mn = 2.0) upon activation with Al(iBu)3/[Ph3C][B(C6F5)4] (TB). Ethylene polymerization activity of 5d activated with Al(iBu)3/TB reached 49.0 × 106 g mol (cat) −1 h−1.  相似文献   

9.
Reactions of neutral amino phosphine compounds HL1-3 with rare earth metal tris(alkyl)s, Ln(CH2SiMe3)3(THF)2, afforded a new family of organolanthanide complexes, the molecular structures of which are strongly dependent on the ligand framework. Alkane elimination reactions between 2-(CH3NH)-C6H4P(Ph)2 (HL1) and Lu(CH2SiMe3)3(THF)2 at room temperature for 3 h generated mono(alkyl) complex (L1)2Lu(CH2SiMe3)(THF) (1). Similarly, treatment of 2-(C6H5CH2NH)-C6H4P(Ph)2 (HL2) with Lu(CH2SiMe3)3(THF)2 afforded (L2)2Lu(CH2SiMe3)(THF) (2), selectively, which gradually deproportionated to a homoleptic complex (L2)3Lu (3) at room temperature within a week. Strikingly, under the same condition, 2-(2,6-Me2C6H3NH)-C6H4P(Ph)2 (HL3) swiftly reacted with Ln(CH2SiMe3)3(THF)2 at room temperature for 3 h to yield the corresponding lanthanide bis(alkyl) complexes L3Ln(CH2SiMe3)2(THF)n (4a: Ln = Y, n = 2; 4b: Ln = Sc, n = 1; 4c: Ln = Lu, n = 1; 4d: Ln = Yb, n = 1; 4e: Ln = Tm, n = 1) in high yields. All complexes have been well defined and the molecular structures of complexes 1, 2, 3 and 4b-e were confirmed by X-ray diffraction analysis. The scandium bis(alkyl) complex activated by AlEt3 and [Ph3C][B(C6F5)4], was able to catalyze the polymerization of ethylene to afford linear polyethylene.  相似文献   

10.
The binuclear alkoxycarbene complexes [M2(CO)9{C(OEt)C4H3Y}] (M = Mn, Y = S(1), O(2); Re, Y = S(3), O(4)) were synthesised and characterised, giving axial carbene ligands for the dimanganese complexes, and equatorial carbene ligands for the dirhenium complexes. Aminolysis of these complexes with ammonia and n-propylamine yielded complexes [M2(CO)9{C(NHR)C4H3Y}] (R = H, M = Mn, Y = S(5), O(6); Re, Y = S(7), O(8); R = propyl, M = Mn, Y = S(9), O(10); Re, Y = S(11), O(12)). For the smaller NH2-substituted carbene ligands, the X-ray structures determined showed equatorial carbene ligands for both dimanganese and dirhenium complexes, while the NHPr-substituted carbene complexes retained the original configurations of the precursor alkoxy carbene complex, indicating that the steric effects of both the M(CO)5-fragment and the carbene ligand substituent can affect the coordination site of the carbene ligands of Group VII transition metal complexes in the solid state.  相似文献   

11.
Alkane elimination reactions of rare earth metal tris(alkyl)s, Ln(CH2SiMe3)3(THF)2 (Ln = Y, Lu) with the multidentate ligands HL1-4, afforded a series of new rare earth metal complexes. Yttrium complex 1 supported by flexible amino-imino phenoxide ligand HL1 was isolated as homoleptic product. In the reaction of rigid phosphino-imino phenoxide ligand HL2 with equimolar Ln(CH2SiMe3)3(THF)2, HL2 was deprotonated by the metal alkyl and its imino CN group was reduced to C-N by intramolecular alkylation, generating THF-solvated mono-alkyl complexes (2a: Ln = Y; 2b: Ln = Lu). The di-ligand chelated yttrium complex 3 without alkyl moiety was isolated when the molar ratio of HL2 to Y(CH2SiMe3)3(THF)2 increased to 2:1. Reaction of steric phosphino β-ketoiminato ligand HL3 with equimolar Ln(CH2SiMe3)3(THF)2 afforded di-ligated mono-alkyl complexes (4a: Ln = Y; 4b: Ln = Lu) without occurrence of intramolecular alkylation or formation of homoleptic product. Treatment of tetradentate methoxy-amino phenol HL4 with Y(CH2SiMe3)3(THF)2 afforded a monomeric yttrium bis-alkyl complex of THF-free. The resultant complexes were characterized by IR, NMR spectrum and X-ray diffraction analyses. All alkyl complexes exhibited high activity toward the ring-opening polymerization of l-lactide to give isotactic polylactide with controllable molecular weight and narrow to moderate polydispersity.  相似文献   

12.
Reaction of (CH3C5H4)2LnCl(THF) with NaNHAr in a 1:1 molar ratio in THF afforded the amide complexes (CH3C5H4)2LnNHAr(THF) [(Ar = 2,6-Me2C6H3, Ln = Yb (I), Y (III); Ar = 2,6-iPr2C6H3, Ln = Yb (II)]. X-ray crystal structure determination revealed that complexes I-III are isostructural. The central metal in each complex coordinated to two methylcyclopentadienyl groups, one amide group and one oxygen atom from THF to form a distorted tetrahedron. Complexes I-III and a known complex (CH3C5H4)2YbNiPr2(THF) IV all can serve as the catalysts for addition of amines to nitriles to monosubstituted N-arylamidines. The activity depended on the central metals and amide groups, and the active sequence follows the trend IV ≈ III < I < II.  相似文献   

13.
Group 4 metal complexes bearing new phenoxy(benzimidazolyl)-imine, -amine and -amide ligands have been synthesized. A series of metal chloride derivatives has been prepared via treatment of MCl4(THF)2 (M = Ti, Zr, Hf) with the in situ generated sodium salt of the (benzimidazolyl)imine phenol 1. Reaction of the pro-ligand 2 with TiCl4(THF)2 afforded the corresponding complex 8 in which the amine proton remains bound to the nitrogen donor. Benzyl complexes of zirconium and hafnium were synthesized via treatment of pro-ligands 1 and 2 with M(CH2Ph)4 precursors. The complexes [NNO]M(CH2Ph)3 (6 M = Zr, 7 M = Hf) were found to undergo benzyl migration from the metal centre to the imine carbon of the ligand backbone giving complexes 11 and 12; the migration follows first order kinetics. The reaction of 1 with Ti(NMe2)4 led to the formation of an unusual C-C coupled product in which a new piperazine ring has formed. Complexes 11 and 12 undergo related transformations, leading to analogous C-C coupled products which were characterized by X-ray crystallography. Deuterium labelling experiments were carried out to determine the mechanistic pathway of the reactions. Chloride and benzyl complexes 3-12 were screened as pre-catalysts for olefin polymerization.  相似文献   

14.
New rare-earth cymantrenecarboxylates [Nd22-OOCCym)4(OOCCym)2(THF)4] (1) and [Ln22-OOCCym)4(OOCCym)2(THF)4]·THF (Ln = Gd (2), Eu (3); Cym = (η5-C5H4)Mn(CO)3) were synthesized starting from carboxycymantrene and lanthanide nitrates, and characterized by X-ray diffraction. The crystals of 1-3 consist of isolated binuclear molecules; the Ln atoms are eight-coordinate. The magnetic properties of 2 are indicative of antiferromagnetic coupling between the Gd atoms at liquid helium temperature. The thermal decomposition of complexes 1-3 was studied by differential scanning calorimetry (DSC) and thermogravimetry (TG). According to the X-ray powder diffraction patterns, the thermal decomposition of the complexes in air affords a mixture of LnMn2O5 and Mn2O3 as the final products.  相似文献   

15.
A series of titanium phosphinimide complexes [Ph2P(2-RO-C6H4)]2TiCl2 (7, R = CH3; 8, R = CHMe2) and [PhP(2-Me2CHO-C6H4)][THF]TiCl3 (9) have been prepared by reaction of TiCl4 with the corresponding phosphinimines under dehalosilylation. The structure of complex 9 has been determined by X-ray crystallography, and a solvent molecule THF was found to be coordinated with the central metal and the Ti-O bond was consistent with the normal Ti-O (donor) bond length. The complexes 7 and 8 displayed inactive to ethylene polymerization, and the complex 9 displayed moderate activity in the presence of modified methylaluminoxane (MMAO) or i-Bu3Al/Ph3CB(C6F5)4, and this should be partly attributed to coordination of THF with titanium and the steric effect of two iso-propoxyl. And catalytic activity up to 32.2 kg-PE/(mol-Ti h bar) was observed.  相似文献   

16.
The new polynuclear heterometal alkoxide clusters Ln2Na8(OCH2CF3)14(THF)6 (Ln = Sm 1, Y 2, Yb 3) have been synthesized by the reaction of anhydrous LnCl3 with 7 equiv. of NaOCH2CF3 in 68–75% yields. Crystal structural analysis revealed clusters 13 are isomorphous composed of two cubanes and a double open cubane, with one face of an Ln1Na2O4 open cubane capped by an additional Ln1O2 layer. Clusters 13 show extremely high activity for the polymerization of ε-caprolactone (ε-CL) and trimethylene carbonate (TMC). The reactivity is much higher than those found for the monometallic alkoxides lanthanide complexes previously reported. The dependence of catalytic activity on lanthanide metals is observed: Yb ≈ Y < Sm for ε-CL and Yb < Y < Sm for TMC. The polymers obtained with these clusters all show a unimodal molecular weight distribution with moderate molecular weight distributions (Mw/Mn = 1.4–1.7), indicating that clusters 13 can really be used as single-component catalysts. The bimetallic cooperation and the coordination–insertion mechanism were proposed.  相似文献   

17.
Two series of new divalent organolanthanide complexes with the general formula [η51-{1-R-3-(C5H9OCH2)C9H5}]2LnII (R = H, Ln = Yb (3); R = Me3Si, Ln = Yb (4); R = H, Ln = Eu (5); R = Me3Si, Ln = Eu (6)) were prepared by reactions of 2 equiv. of 1-R-3-(C5H9OCH2)C9H6 (R = H (1), R = Me3Si (2)) with the lanthanide(III) amides [(Me3Si)2N]3Ln(μ-Cl)Li(THF)3 (Ln = Yb, Eu) via a one-electron reductive elimination process. Recrystallization of 6 from n-hexane afforded [η51-(C5H9OCH2C9H5SiMe3)]2EuII · (C6H14)0.5 (7). All compounds were fully characterized by elemental analyses, and spectroscopic methods. The structures of complexes 4 and 7 were additionally determined by single-crystal X-ray analyses. The catalytic activity of the complexes on methyl methacrylate and ε-caprolactone polymerization was studied, and the temperatures, substituents on the indenyl ring, and solvents effects on the catalytic activity of the complexes were examined.  相似文献   

18.
Treatment of [Cp′MH(CO)3] (M = Mo, W; Cp′ = η5-C5H5 (Cp), η5-C5Me5 (Cp*)) with 1/8 equiv of S8 in THF, followed by the reaction with dppe under UV irradiation, gave new mono(hydrosulfido) complexes [Cp′M(SH)(CO)(dppe)] (Cp′ = Cp: M = Mo (5), W (6); Cp′ = Cp*: M = Mo (7), W (8); dppe = Ph2PCH2CH2PPh2). When 5 and 6 dissolved in THF were allowed to react with [RhCl(PPh3)3] in the presence of base, heterodinuclear complexes with bridging S and dppe ligands [CpM(CO)(μ-S)(μ-dppe)Rh(PPh3)] (M = Mo (9), W(10)) were obtained. Semi-bridging feature of the CO ligands were also demonstrated. Upon standing in CH2Cl2 solutions, 9 and 10 were converted further to the dimerization products [(CpM)2{Rh(dppe)}22-CO)23-S)2] (M = Mo (13), W). Detailed structures of mononuclear 7 and 8, dinuclear 9 and tetranuclear 13 have been determined by the X-ray diffraction.  相似文献   

19.
Two new complexes based on lanthanide ions and nitronyl nitroxide radical, Ln(hfac)3(NITPh-p-Cl)2 (Ln = Gd(1), Nd(2); hfac = hexafluoroacetylacetonate; NITPh-p-Cl = 2-(4′-chlorphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide) have been synthesized and characterized by single-crystal X-ray diffraction. The single-crystal structures show that two complexes have similar structures, which consist of radical-Ln-radical isolated molecules. The Ln(III) ions are eight-coordinated in slightly distorted dodecahedral geometry. NITPh-p-Cl molecules act as monodentate ligands linking two Ln(III) ions through the oxygen atoms of the N-O groups. The magnetic studies show that the spin coupling between the Gd(III) ion and the radicals in the complex 1 is weak ferromagnetic (J = 0.38 cm−1), while complex 2 exhibits antiferromagnetic interactions (zJ′ = −0.36 cm−1) between Nd(III) ion and radicals.  相似文献   

20.
Four transition–lanthanide metal–organic coordination polymers, namely [Ag2Ln(nic)4(H2O)4 · (ClO4) · H2O] [Ln = Eu (1), Gd (2)] and [AgLn(nic)2(ox)0.5(H2O)2 · (ClO4) · H2O] [Ln = Tb (3), Yb (4)] (nic = nicotinate; ox = oxalate) have been synthesized by the hydrothermal reactions of 4d and 4f metal salts with N-/O-donor ligands. The isostructural complexes 1 and 2 exhibit novel 2D wave-like heterometallic layers constructed by the assembly of 1D chains of lanthanide–carboxylate with Ag(nic)2 subunits. Complexes 3 and 4 show another unusual 3D heterometallic coordination framework constructed from 2D lanthanide–oxalate layers and pillar-like Ag(nic)2 subunits. Furthermore, the luminescent properties of complexes 1 and 3 were studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号