首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Six new organoantimony(V) complexes containing various isomers of fluoromethylbenzoate ligands [RC6H3COO]2SbPh3 and [RC6H3COO]SbPh4 [R = 3-F-4-(CH3) (1, 4), 4-F-2-(CH3) (2, 5), 5-F-2-(CH3) (3, 6)] have been synthesized by the reactions of triphenylantimony(V) dichloride or tetraphenylantimony(V) bromide with various isomers of fluoromethylbenzoate ligands in 1:2 or 1:1 stoichiometries. All the complexes have been characterized by elemental analysis, IR and NMR [1H, 13C and 19F] studies. The crystal structures of complexes 1, 3, 4, 5 and 6 have been determined by X-ray single crystal diffraction. The structure of complexes show that the five-coordinated antimony(V) atom adopts a distorted trigonal bipyramidal geometry. Furthermore, weak but significant intermolecular C–H···O, C–H···F hydrogen bonds, C–H···pi stacking lead to aggregation and assembly of these complexes into 1D and 2D supramolecular frameworks.  相似文献   

2.
A series of organotin(IV) complexes with 2,5-dimercapto-1, 3, 4-thiodiazole (HHdmt) of the type (RnSnClm)2(dmt) (m=0, n=3, R=Ph 1, PhCH22, n-Bu 3; m=1, n=2, R=Ph 4) and [R2Sn(dmt) · L]n (L=0.5C6H6, R=CH35; L=0, n=5, R=n-Bu 6) have been synthesized. All complexes 1-6 were characterized by elemental analysis, IR, 1H and 13C NMR spectra. And except for 3, complexes 1, 2, 4, 5 and 6 were also determined by X-ray crystallography. The tin atoms of complexes 1, 2, 3 and 4 are all five-coordinated. The geometries at tin atoms of 1, 2, 3 and 4 are distorted trigonal bipyramidal. The tin atoms of complexes 5 and 6 are six-coordinated and their geometries are distorted octahedral.  相似文献   

3.
Two new complexes based on lanthanide ions and nitronyl nitroxide radical, Ln(hfac)3(NITPh-p-Cl)2 (Ln = Gd(1), Nd(2); hfac = hexafluoroacetylacetonate; NITPh-p-Cl = 2-(4′-chlorphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide) have been synthesized and characterized by single-crystal X-ray diffraction. The single-crystal structures show that two complexes have similar structures, which consist of radical-Ln-radical isolated molecules. The Ln(III) ions are eight-coordinated in slightly distorted dodecahedral geometry. NITPh-p-Cl molecules act as monodentate ligands linking two Ln(III) ions through the oxygen atoms of the N-O groups. The magnetic studies show that the spin coupling between the Gd(III) ion and the radicals in the complex 1 is weak ferromagnetic (J = 0.38 cm−1), while complex 2 exhibits antiferromagnetic interactions (zJ′ = −0.36 cm−1) between Nd(III) ion and radicals.  相似文献   

4.
By refluxing a mixture of CuCl2 and 3-methyl-6-phenyl-[1,2,4]-triazolo[3,4-b][1,3,4]thiadiazole (TRTZ) with addition of acetic acid and KSCN, respectively, the complexes [Cu(TRTZ)2(OAc)2(H2O)]?·?1.5H2O (1) and [Cu(TRTZ)2(SCN)2(H2O)2]?·?2DMF (2) were obtained. Single-crystal structure of both complexes was determined and their thermal behaviour and IR spectra examined.  相似文献   

5.
The triorganotin(IV) derivatives of 2-mercapto-4-quinazolinone (HSqualone) of the type, R3SnL (R = Ph 1, CH32, PhCH23, p-F-PhCH24, o-F-PhCH25, n-Bu 6), were obtained by the reaction of the R3SnCl and HSqualone with 1:1 molar ratio in benzene. All complexes 1-6 were characterized by elemental analyses, IR, 1H and 13C NMR spectroscopy and the crystal structures of complexes 1-3 were also confirmed by X-ray crystallography. The structure analyses reveal that the tin atoms of complexes 1-3 are all distorted tetrahedral geometries. Furthermore, the dimeric structures in complexes 1-3 have also been found linked by intermolecular O-H?N or N-H?O hydrogen bonding interaction. Interestingly, the dimers of complexes 2 and 3 are further linked into one-dimensional chain through intermolecular C-H?S and C-H?O weak hydrogen bonding interactions, respectively.  相似文献   

6.
Eight new antimony (III) complexes containing dithiocarbamate ligands (R2NCS2)2SbBr [R2NCS2 = OC4H8NCS2 (1), C2H5NC4H8NCS2 (2), Me2NCS2 (3), C4H8NCS2 (4)] and (R2NCS2)3Sb[R2NCS2 = C5H10NCS2 (5), Bz2NCS2 (6), Et2NCS2 (7), (HOCH2CH2)2NCS2 (8)] have been synthesized by the reactions of antimony (III) halides with dithiocarbamate ligands in 1:2 or 1:3 stoichiometries. All the complexes have been characterized by elemental analysis, melting point as well as spectral [IR and NMR (1H and 13C)] studies. The crystal structures of complexes 1, 5 and 8 have been determined by X-ray single crystal diffraction, and their electrochemical character has also been studied.  相似文献   

7.
The compounds, Cd(BF4)(TaF6) and Cd(BF4)(BiF6), have been synthesized and characterized by single-crystal X-ray diffraction and Raman spectroscopy. Both isostructural compounds crystallize in the monoclinic P21/c space group with a = 8.2700(6) Å, b = 9.3691(6) Å, c = 8.8896(7) Å, β = 94.196(3)°, V = 686.94(9) Å3 for Cd(BF4)(TaF6) and a = 8.3412(8) Å, b = 9.4062(8) Å, c = 8.9570(7) Å, β = 93.320(5)°, V = 701.58(11) Å3 for Cd(BF4)(BiF6). Eight fluorine atoms (4 BF4 + 4 AF6) form a surrounding around the cadmium atom in the shape of distorted square antiprism. These compounds are not isostructural with mixed-anion analogues of Ca, Sr, Ba and Pb studied earlier.  相似文献   

8.
Two mononuclear cis-dioxovanadium(V) complexes of pyrazole-derived, Schiff-base ligands have been synthesized and characterized. Single crystal X-ray analyses were performed with N ′-[(3-methyl-1H-pyrazole-5-yl)carbonyl]pyridine-2-carbohadrazonamido cis-dioxovanadium(V), {[VO2(PzOAP)] · H2O} (1), and 5-methyl-N-[(1E)-1-(pyridin-2-yl)ethylidene]-1H-pyrazole-3-carbohydrazonate cis-dioxovanadium(V), {[VO2(PzCAP)]} (2). Both complexes crystallize in monoclinic crystal systems with different space groups. Complex 1 crystallizes in the space group P21/c, 2 in space group C2/C. In each complex, the vanadium sits within a distorted square pyramidal geometry with an N2O3 chromophore. The τ parameters of the complexes (0.33 for 1, 0.22 for 2) support their square pyramidal geometry. The interesting finding in the work is that the alkoxide oxygen, imino nitrogen, and pyridine nitrogen take part in the coordination process leaving the pyrazole rings inactive in coordination.  相似文献   

9.
This article presents the synthesis, physico-chemical, in particular voltammetric, characteristics of two iron(III) complexes with pyridoxal aminoguanidine (PLAG), [Fe(PLAG)Cl2(H2O)]Cl (1) and [Fe(PLAG)2](NO3)3 (2). As expected, the zwitterion of the chelate ligand is coordinated tridentate through oxygen of phenol and nitrogen atoms of azomethine and imino groups of the aminoguanidine fragment. In both complexes, Fe(III) is distorted octahedral. [Fe(PLAG)2](NO3)3 (2) is the first bis(ligand) complex with this ligand. Cyclic voltammetric characteristics of the ligand and complexes were studied in DMF in the presence of TBAP or LiCl as supporting electrolytes. The complexes are unstable in this solvent, especially in the presence of an excess of chloride, thus forming several reducible species whose stabilities and behaviors were characterized.  相似文献   

10.
The neutral, mononuclear complex [ReO(mta)2Cl] (1) [Hmta?=?2-(methylmercapto)aniline] was prepared by reaction of trans-[ReOCl3(PPh3)2] with a twofold molar excess of Hmta in methanol. The oxo-bridged dimer (μ-O)[ReO(mta)2]2 (2) was synthesized by reacting [ReOCl3(PPh3)2] with a twofold excess of Hmta in a 9?:?1 acetone/water mixture. The compounds were characterized by spectroscopy and complex 1 also by X-ray crystallography. Complex 1 has a distorted octahedral geometry with the chloride coordinated trans to the oxo group, and with the chelating ligands in the equatorial plane in a cis-N cis-S configuration.  相似文献   

11.
The neutral distorted octahedral complexes [ReOCl(L)] {H2L = N,N-bis(2-hydroxybenzyl)-2-(2-aminoethyl)dimethylamine (H2had); N,N-bis(2-hydroxybenzyl)-aminomethylpyridine (H2hap); N,N-bis(2-hydroxybenzyl)-2-(2-aminoethyl)pyridine (H2hae)} were prepared by the reaction of trans-[ReOCl3(PPh3)2] with a twofold molar excess of H2L in ethanol. X-ray structure determinations of [ReOCl(had)] (1) and [ReOCl(hap)] (2) were performed, and the structures compared. In both complexes the choride is coordinated trans to the tripodal tertiary amino nitrogen, with a phenolate oxygen trans to the oxo oxygen.  相似文献   

12.
A new tridentate Schiff base, 5-bromosalicylaldehyde S-allylisothiosemicarbazone hydrobromide (H2L), and several new mononuclear complexes of copper(II) and molybdenum(VI) of this ligand with general formulas ([Cu(L)Im] (1)), ([Cu(L)NH3]·4H2O (2)), and ([MoO2(L)1-MeIm] (3), Imidazole: Im, 1-methylimidazole: 1-MeIm) were prepared and characterized by elemental analyses, IR, proton magnetic resonance Spectroscopy, and ultraviolet–visible techniques. The physico-chemical results suggested that the H2L coordinates in the dianionic tridentate form. Crystal structures of the Cu(II) complexes reveal a square planar configuration surrounded by the dianionic tridentate isothiosemicarbazone (ONN) and Im and NH3 for 1 and 2, respectively. The L2-, two oxo, and 1-methylimidazole are coordinated to molybdenum(VI) in a distorted octahedral geometry in 3. Formation of pure metal oxide residues was confirmed by thermal degradation of the complexes.  相似文献   

13.
14.
Four new triorganotin(IV) complexes: Me3SnL1SnMe3 (1), Ph3SnL1SnPh3 (2), [Me3SnL2] n (3), Ph3SnL2SnPh3 (4) have been synthesized from 6-anilino-1,3,5-triazine-2,4-dithiol (L1H2) and 6-(dibutylamino)-1,3,5-triazine-2,4-dithiol (L2H2). All were characterized by elemental analyses, IR and NMR spectra and X-ray diffraction analyses. Crystal structures show that 1, 2 and 4 are monomers with one ligand coordinated to two triorganotin moieties; complex 3 is a helical chain. Significant C–H ··· π, N–H ··· π interactions and intermolecular hydrogen bonds stabilize these structures.  相似文献   

15.
Four new coordination polymers of cadmium(II) with hexamethylenetetramine (htm) have been synthesized and characterized by routine physicochemical techniques as well as by X-ray single crystal structure analysis. They are [CdBr(htm)(SCN)(H2O)2·CH3OH]n (1), [CdI(htm)(SCN)(H2O)2·0.5(CH3OH)]n (2), [Cd2(htm)3(SCN)4(H2O)]n·nH2O (3) and [Cd3Br6(htm)2(H2O)5·(htm)(H2O)6]n (4). Complexes 1, 2 and 3 exhibit 1D polymeric structure and complex 4 shows a 2D undulated layered arrangement, containing Cd6(htm)6 hexagonal units as building block, which extended to a 3D supramolecular architecture through hydrogen bonding. Thorough thermal investigation suggest that as far as the thermal stability of Cd(II)-htm bond is concerned it attains the maximum in complex 1 and minimum in complex 4. In case of complex 3 the thermal study inferred that CdS end product was obtained at ∼730 °C, whereas in case of other complexes the thermally stable end product remained unidentified. Solid state fluorescence study shows that all the complexes are luminescent at room temperature except complex 3.  相似文献   

16.
The reactions of the potentially tridentate Schiff bases 2-[(2-hydroxyphenyl)iminomethyl]phenol (H2ono) and 2-(2-aminobenzylideneimino)phenol (H3onn) with trans-[ReOBr3(PPh3)2] were studied, and the complexes [ReIIIBr(PPh3)2(ono)] (1) and [ReVBr(PPh3)2(onn)]Br (2) were isolated. In 1ono acts as a dianionic tridentate ligand, and in 2onn is coordinated as a tridentate trianionic imido-imino-phenolate. The complex [ReI(CO)3(ons)(Hno)] was isolated from the reaction of [Re(CO)5Br] with 2-[(2-methylthio)benzylideneimino]phenol (Hons; Hno = 2-aminophenol), with ons coordinated as a bidentate chelate with a free SCH3 group. These complexes were characterized by X-ray crystallography, NMR and IR spectroscopy.  相似文献   

17.
Three coordination complexes with N-donor ligands, Ag2(L1)1.5(NO3)2 (1), Ag3(L2)2(NO3)3 (2), and Ag(L1)2NO3 (3) {L1?=?1,4-bis(pyrazole-1-ylmethyl)benzene, L2 = 4,4′-bis(pyrazole-1-ylmethyl)biphenyl}, have been synthesized and structurally characterized by elemental analysis, IR spectroscopy, TGA, and X-ray single crystal diffraction. Complex 1 shows a 3-D fsh-3,4-P21/c structure with brevity code {83}2{85·10}. Complex 2 has a 3-D framework with a 2-D layer penetrated by an infinite 1-D zigzag chain. Complex 3 exhibits a (4,4)-net racemizing layer structure with nitrate anions filling the cavity. The results indicate that L1 and L2 can adopt varied conformations in formation of the complexes, and the length of the ligands plays a key role in configuring and directing the corresponding structure of the complexes.  相似文献   

18.
A series of anionic five-coordinate binary oxorhenium(V) complexes with dithiolato ligands, Bu4N[ReO(L1)2] (1a), Bu4N[ReO(L2)2] (1b), and Bu4N[ReO(L3)2] (1c), and a series of neutral octahedral ternary oxorhenium(V) complexes of mixed dithiolato and bipyridine ligands, [ReO(L1)(bpy)Cl] (2a), [ReO(L2)(bpy)Cl] (2b), and [ReO(L3)(bpy)Cl] (2c) (where L1H2 = ethane-1,2-dithiol, L2H2 = propane-1,3-dithiol, L3H2 = toluene-3,4-dithiol, and bpy = 2,2′-bipyridine), were isolated and characterized by physicochemical and spectroscopic methods. The solid state structure of 1c was established by X-ray crystallography. All the mononuclear oxorhenium(V) complexes are diamagnetic. The redox behavior of all the complexes has been studied voltammetrically.  相似文献   

19.
Two types of di-n-butyltin(IV) complexes {[nBu2Sn(O2CR)]2O}2 · L 1-4 and nBu2Sn(O2CR)2Y 5-8 (when L=H2O, R=2-pyrazine 1; L=0, R=2-pyrimidylthiomethylene 2, 1-naphthoxymethylene 3; L=C6H6, R=2-naphthoxymethylene 4; when Y=H2O, R=2-pyrazine 5; Y=0, R=2-pyrimidylthiomethylene 6, 1-naphthoxymethylene 7, 2-naphthoxymethylene 8) have been prepared in 1:1 or 1:2 molar ratios by reactions of di-n-butyltin oxide with the heteroatomic (N, O or S) carboxylic acids. The complexes 1-8 are characterized by elemental, IR, 1H and 13C NMR spectra. And except for complexes 6 and 7, the complexes 1-5 and 8 are also characterized by X-ray crystallography diffraction analyses, which reveal that the tin atom of complex 5 is seven-coordinated, while the complexes 1-4 and 8 are all hexa-coordinated. The nitrogen atom of the aromatic ring in complexes 1 and 5 participates in the interactions with the Sn atom.  相似文献   

20.
New compounds of the type M2(H2F3)(HF2)2(AF6) with M = Ca, A = As and M = Sr, A = As, P) were isolated. Ca2(H2F3)(HF2)2(AsF6) was prepared from Ca(AsF6)2 with repeated additions of neutral anhydrous hydrogen fluoride (aHF). It crystallizes in a space group P4322 with a = 714.67(10) pm, c = 1754.8(3) pm, V = 0.8963(2) nm3 and Z = 4. Sr2(H2F3)(HF2)2(AsF6) was prepared at room temperature by dissolving SrF2 in aHF acidified with AsF5 in mole ratio SrF2:AsF5 = 2:1. It crystallizes in a space group P4322 with a = 746.00(12) pm, c = 1805.1(5) pm, V = 1.0046(4) nm3 and Z = 4. Sr2(H2F3)(HF2)2(PF6) was prepared from Sr(XeF2)n(PF6)2 in neutral aHF. It crystallizes in a space group P4122 with a = 737.0(3) pm, c = 1793.7(14) pm, V = 0.9744(9) nm3 and Z = 4. The compounds M2(H2F3)(HF2)2(AF6) gradually lose HF at room temperature in a dynamic vacuum or during being powdered for recording IR spectra or X-ray powder ray diffraction patterns. All compounds are isotypical with coordination of nine fluorine atoms around a metal center forming a distorted Archimedian antiprism with one face capped. This is the first example of the compounds in which H2F3 and HF2 anions simultaneously bridge metal centers forming close packed three-dimensional network of polymeric compounds with low solubility in aHF. The HF2 anions are asymmetric with usual F?F distances of 227.3-228.5 pm. Vibrational frequency (ν1) of HF2 is close to that in NaHF2. The anion H2F3 exhibits unusually small F?F?F angle of 95.1°-97.6° most probably as a consequence of close packed structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号