首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
The reaction of the phosphine functionalised titanium half-sandwich complexes 7, 9 and 10 with the binuclear complex [(p-cymene)RuCl2]2 allowed the access to three new early-late bimetallic complexes (p-cymene)[(μ-η51-C5H4(CH2)nPR2)TiX3]RuCl2 (11-13). The structure of 11 (n = 0, X = Cl) has been confirmed by X-ray diffraction. The ruthenium titanium half-sandwich bimetallic complexes so formed and the ruthenium titanocene analogues 4-6 catalyse the addition of ethyl diazoacetate to styrene with high selectivity toward cyclopropanation versus metathesis contrary to the monometallic complexes (p-cymene)RuCl2PR3.  相似文献   

2.
N-heterocyclic bis-carbene ligand (bis-NHC) which was derived from 1,1′-diisopropyl-3,3′-ethylenediimidazolium dibromide (L·2HBr) via silver carbene transfer method, reacted with [(η6-p-cymene)RuCl2]2 and [CpMCl2]2 (Cp = η5-C5Me5, M = Ir, Rh) respectively, afforded complexes [(η6-p-cymene)RuCl2]2(L) (1), [CpIrCl2]2(L) (2) and [CpRhCl(L)][CpRhCl3] (3). When [CpIrCl2]2 was treated with 2 equiv AgOTf at first, and then reacted with bis-NHC ligand, [CpIrCl(L)]OTf (4) was obtained. The molecular structures of complexes 1-4 were determined by X-ray single crystal analysis, showing that 1 and 2 adopted bridging coordination mode, 3 and 4 adopted chelating coordination mode. All of these complexes were characterized by 1H, 13C NMR spectroscopy and element analysis.  相似文献   

3.
The reactions of [(ind)Ru(PPh3)2CN] (ind = η5-C9H7) (1) and [CpRu(PPh3)2CN] (Cp = η5-C5H5) (2) with [(η6-p-cymene)Ru(bipy)Cl]Cl (bipy = 2,2′-bipyridine) (3) in the presence of AgNO3/NH4BF4 in methanol, respectively, yielded dicationic cyano-bridged complexes of the type [(ind)(PPh3)2Ru(μ-CN)Ru(bipy)(η6-p-cymene)](BF4)2 (4) and [Cp(PPh3)2Ru(μ-CN)Ru(bipy)(η6-p-cymene)](BF4)2 (5). The reaction of [CpRu(PPh3)2CN] (2), [CpOs(PPh3)2CN] (6) and [CpRu(dppe)CN] (7) with the corresponding halide complexes and [(η6-p-cymene)RuCl2]2 formed the monocationic cyano-bridge complexes [Cp(PPh3)2Ru(μ-CN)Os(PPh3)2Cp](BF4) (8), [Cp(PPh3)2Os(μ- CN)Ru(PPh3)2Cp](BF4) (9) and [Cp(dppe)Ru(μ-CN)Os(PPh3)2Cp](BF4) (10) along with the neutral complexes [Cp(PPh3)2Ru(μ-CN)Ru (η6-p-cymene)Cl2] (11), [Cp(PPh3)2Os(μ-CN)Ru(η6-p-cymene)Cl2] (12), and [Cp(dppe) Ru(μ-CN)Ru(η6-p-cymene)Cl2] (13). These complexes were characterized by FT IR, 1H NMR, 31P{1H} NMR spectroscopy and the molecular structures of complexes 4, 8 and 11 were solved by X-ray diffraction studies.  相似文献   

4.
The mononuclear cations [(η5-C5Me5)RhCl(bpym)]+ (1), [(η5-C5Me5)IrCl(bpym)]+ (2), [(η6-p-PriC6H4Me)RuCl(bpym)]+ (3) and [(η6-C6Me6)RuCl(bpym)]+ (4) as well as the dinuclear dications [{(η5-C5Me5)RhCl}2(bpym)]2+ (5), [{(η5-C5Me5)IrCl}2(bpym)]2+ (6), [{(η6-p-PriC6H4Me)RuCl}2(bpym)]2+ (7) and [{(η6-C6Me6)RuCl}2(bpym)]2+ (8) have been synthesised from 2,2′-bipyrimidine (bpym) and the corresponding chloro complexes [(η5-C5Me5)RhCl2]2, [(η5-C5Me5)IrCl2]2, [(η6-PriC6H4Me)RuCl2]2 and [(η6-C6Me6)RuCl2]2, respectively. The X-ray crystal structure analyses of [3][PF6], [5][PF6]2, [6][CF3SO3]2 and [7][PF6]2 reveal a typical piano-stool geometry around the metal centres; in the dinuclear complexes the chloro ligands attached to the two metal centres are found to be, with respect to each other, cis oriented for 5 and 6 but trans for 7. The electrochemical behaviour of 1-8 has been studied by voltammetric methods. In addition, the catalytic potential of 1-8 for transfer hydrogenation reactions in aqueous solution has been evaluated: All complexes catalyse the reaction of acetophenone with formic acid to give phenylethanol and carbon dioxide. For both the mononuclear and dinuclear series the best results were obtained (50 °C, pH 4) with rhodium complexes, giving turnover frequencies of 10.5 h−1 for 1 and 19 h−1 for 5.  相似文献   

5.
The complex [(η6-p-cymene)Ru(μ-Cl)Cl]21 reacts with pyrazole ligands (3a-g) in acetonitrile to afford the amidine derivatives of the type [(η6-p-cymene)Ru(L)(3,5-HRR′pz)](BF4)2 (4a-f), where L = {HNC(Me)3,5-RR′pz}; R, R′ = H (4a); H, CH3 (4b); C6H5 (4c); CH3, C6H5 (4d) OCH3 (4e); and OC2H5 (4f), respectively. The ligand L is generated in situ through the condensation of 3,5-HRR′pz with acetonitrile under the influence of [(η6-p-cymene)RuCl2]2. The complex [(η6-C6Me6)Ru(μ-Cl)Cl]22 reacts with pyrazole ligands in acetonitrile to yield bis-pyrazole derivatives such as [(η6-C6Me6)Ru (3,5-HRR′pz)2Cl](BF4) (5a-b), where R, R′ = H (5a); H, CH3 (5b), as well as dimeric complexes of pyrazole substituted chloro bridged derivatives [{(η6-C6Me6)Ru(μ-Cl) (3,5-HRR′pz)}2](BF4)2 (5c-g), where R, R′ = CH3 (5c); C6H5 (5d); CH3, C6H5 (5e); OCH3 (5f); and OC2H5 (5g), respectively. These complexes were characterized by FT-IR and FT-NMR spectroscopy as well as analytical data. The molecular structures1 of representative complexes [(η6-C6Me6)Ru{3(5)-Hmpz}2Cl]+5b, [(η6-C6Me6)Ru(μ-Cl)(3,5-Hdmpz)]22+5c and [(η6-C6Me6)Ru(μ-Cl){3(5)Me,5(3)Ph-Hpz}]22+5e were established by single crystal X-ray diffraction studies.  相似文献   

6.
The synthesis and characterization of binuclear ruthenium complexes [{(η6-C6H6)Ru}2(μ-bsh)2] (1), [{(η6-C10H14)Ru}2(μ-bsh)2] (2), [{(η6-C6Me6)Ru}2(μ-bsh)2] (3), and rhodium complex [{(η5-C5Me5)RhCl}2(μ-bsh)] (4) (bsh=N,N-bis(salicylidine)-hydrazine dianion) are reported. The complexes have been fully characterized by analytical and spectral techniques and unusual coordination mode of the ligand H2bsh has been confirmed by single crystal X-ray analysis of the complex 2. Structural data revealed extensive inter- and intra-molecular C-H?O and C-H?π interactions and involvement of methyl and isopropyl hydrogen from the p-cymene in hydrogen bonding.  相似文献   

7.
[(η5-C5R5)Fe(PMe3)2H] (R = H, Me) can be made in good yields in a simple one-pot reaction between FeCl2, PMe3, C5R5H (R = H, Me) and Na/Hg in thf. Reaction of [(η5-C5H5)Fe(PMe3)2H] with pentaborane(9) gives the known metallaborane [(η5-C5H5)-nido-2-FeB5H10] (1) in improved yield as well as the new metallaboranes [(η-C5H5)-nido-2-FeB5H8{μ-5,6-Fe(η5-C5H5)(PMe3)(μ-6,7-H)}] (2), [(η-C5H5)(PMe3)-arachno-2-FeB3H8] (3), [(η5-C5H5)2-capped-nido-2,3-Fe2B4H8] (4), [(η5-C5H5)-nido-2-FeB4H7(PMe3)] (5) and [(η5-C5H5)-nido-2-FeB5H8(PMe3)] (6). Reaction of [(η5-C5Me5)Fe(PMe3)2H] with pentaborane(9) gives predominantly [(η5-C5Me5)-nido-2-FeB5H10] (7) and [(η5-C5Me5)(PMe3)-arachno-2-FeB3H8] (8). Reaction of [(η5-C5H5)Fe(PMe3)2H] with 2 equiv. of BH3 · thf gives low yields of ferrocene and compound 3. Compound 7 thermally isomerises to the apical isomer [(η5-C5H5)-nido-2-FeB5H10] (9) in low yield. Compounds 1 and 7 deprotonate cleanly in the presence of KH at the unique B-H-B bridge to give [(η5-C5H5)-nido-2-FeB5H9][K+] (10) and [(η5-C5Me5)-nido-2-FeB5H9][K+] (11) respectively, whilst 6 deprotonates more slowly at one of two equivalent B-H-B bridges to give the fluxional anion [(η5-C5H5)-nido-2-FeB5H7(PMe3)] (12).  相似文献   

8.
The synthesis and characterization of novel amidoamine-based metallodendrimers with heterobimetallic end-grafted amidoferrocenyl-palladium-allyl chloride units is described. Dendrimer (Fe((η5-C5H4PPh2)(η5-C5H4))C(O)HNCH2CH2NHC(O)CH2CH2)N[CH2CH2N(CH2CH2C(O)NHCH2CH2NH-C(O)(Fe(η5-C5H4)(η5-C5H4PPh2)))2]2 (9-Fe) and the corresponding metal species (Fe((η5-C5H4PPh2(Pd(η3-C3H5)Cl))(η5-C5H4))C(O)HNCH2CH2NHC(O)CH2CH2)N[CH2CH2N(CH2CH2C(O)NHCH2CH2NHC(O)(Fe(η5-C5H4)(η5-C5H4PPh2(Pd(η3-C3H5)Cl))))2]2 (9-Fe-Pd) were prepared by a consecutive divergent synthesis methodology including addition-amidation cycles, standard peptide coupling, and coordination procedures. For comparative reasons also the monomeric and dimeric molecules (Fe(η5-C5H4PPh2)(η5-C5H4C(O)NHnC3H7)) (5-Fe) and [Fe(η5-C5H4PPh2)(η5-C5H4C(O)NHCH2)]2 (6-Fe) as well as N(CH2CH2C(O)NHCH2CH2NHC(O)(Fe(η5-C5H4)(η5-C5H4PPh2)))3 (7-Fe) and [CH2N(CH2CH2C(O)NHCH2CH2NHC(O)(Fe(η5-C5H4)(η5-C5H4PPh2)))2]2 (8-Fe) were prepared from Fe(η5-C5H4PPh2)(η5-C5H4CO2H) (3). Using [Pd(η3-C3H5)Cl]2 (4) as palladium source heterobimetallic metallodendrimers (Fe(η5-C5H4PPh2(Pd(η3-C3H5)Cl))(η5-C5H4C(O)NHnC3H7)) (5-Fe-Pd), [Fe(η5-C5H4PPh2(Pd(η3-C3H5)Cl))(η5-C5H4C(O)NHCH2)]2 (6-Fe-Pd), N(CH2CH2C(O)NHCH2CH2NHC(O)(Fe(η5-C5H4)(η5-C5H4PPh2(Pd(η3-C3H5)Cl))))3 (7-Fe-Pd) and [CH2N(CH2CH2C(O)NHCH2CH2NHC(O)(Fe(η5-C5H4)(η5-C5H4PPh2(Pd(η3-C3H5)Cl))))2]2 (8-Fe-Pd) were synthesized. Additionally, seleno-phosphines of 5-Fe-Se and 9-Fe-Se, respectively, were prepared by addition of elemental selenium to 5-Fe or 9-Fe to estimate their σ-donor properties.The palladium-containing amidoamine supports are catalytically active in the Heck-Mizoroki cross-coupling of iodobenzene with tert-butyl acrylate. The catalytic data are compared to those obtained for the appropriate mononuclear and dinuclear compounds 5-Fe-Pd and 6-Fe-Pd. This comparison confirms a positive cooperative effect. The mercury drop test showed that (nano)particles were formed during catalysis, following on heterogeneous carbon-carbon cross-coupling.  相似文献   

9.
The new potentially bidentate pyrazole-phosphinite ligands [(3,5-dimethyl-1H-pyrazol-1-yl)methyl diphenylphosphinite] (L1) and [2-(3,5-dimethyl-1H-pyrazol-1-yl)ethyl diphenylphosphinite] (L2) were synthesised and characterised. The reaction of L1 and L2 with the dimeric complexes [Ru(η6-arene)Cl2]2 (arene = p-cymene, benzene) led to the formation of neutral complexes [Ru(η6-arene)Cl2(L)] (L = L1, L2) where the pyrazole-phosphinite ligand is κ1-P coordinated to the metal. The subsequent reaction of these complexes with NaBPh4 or NaBF4 produced the [Ru(η6-p-cymene)Cl(L2)][BPh4] and [Ru(η6-benzene)Cl(L2)][BF4] compounds which contain the pyrazole-phosphinite ligand κ2-P,N bonded to ruthenium. All the complexes were fully characterised by analytical and spectroscopic methods. The structure of the complex [Ru(η6-p-cymene)Cl(L2)][BPh4] was also determined by a X-ray single crystal diffraction study.  相似文献   

10.
The mononuclear complexes [(η5-C5Me5)IrCl(L1)] (1), [(η5-C5Me5)RhCl(L1)] (2), [(η6-p-PriC6H4Me)RuCl(L1)] (3) and [(η6-C6Me6)RuCl(L1)] (4) have been synthesised from pyrazine-2-carboxylic acid (HL1) and the corresponding complexes [{(η5-C5Me5)IrCl2}2], [{(η5-C5Me5)RhCl2}2], [{(η6-p-PriC6H4Me)RuCl2}2], and [{(η6-C6Me6)RuCl2}2], respectively. The related dinuclear complexes [{(η5-C5Me5)IrCl}2(μ-L2)] (5), [{(η5-C5Me5)RhCl}2(μ-L2)] (6), [{(η6-p-PriC6H4Me)RuCl}2(μ-L2)] (7) and [{(η6-C6Me6)RuCl}2(μ-L2)] (8) have been obtained in a similar manner from pyrazine-2,5-dicarboxylic acid (H2L2). Compounds isomeric to the latter series, [{(η5-C5Me5)IrCl}2(μ-L3)] (9), [{(η5-C5Me5)RhCl}2(μ-L3)] (10), [{(p-PriC6H4Me)RuCl}2(μ-L3)] (11) and [{(η6-C6Me6)RuCl}2(μ-L3)] (12), have been prepared by using pyrazine-2,3-dicarboxylic acid (H2L3) instead of H2L2. The molecular structures of 2 and 3, determined by X-ray diffraction analysis, show the pyrazine-2-carboxylato moiety to act as an N,O-chelating ligand, while the structure analyses of 5-7, confirm that the pyrazine-2,5-dicarboxylato unit bridges two metal centres. The electrochemical behaviour of selected representatives has been studied by voltammetric techniques.  相似文献   

11.
The reaction of 2,6-dimethoxypyridine-3-carboxylic acid (DMPH) with different precursors [Ti(η5-C5H5)2Cl2], [Ti(η5-C5H4Me)2Cl2], [Ti(η5-C5H4SiMe3)(η5-C5H5)Cl2], [Ti(η5-C5Me5)Cl3], SnMe3Cl and GatBu3 yielded the complexes [Ti(η5-C5H5)2(DMP-κO)2] (1), [Ti(η5-C5H4Me)2(DMP-κO)2] (2), [Ti(η5-C5H4SiMe3)(η5-C5H5)(DMP-κO)2] (3), [Ti(η5-C5Me5)(DMP-κ2O,O′)3] (4), [SnMe3(μ-DMP-κOO′)] (5), and [GatBu2(μ-DMP-κOO′)]2 (6). 1-6 have been characterized by spectroscopic methods and the molecular structure of the complexes 1, 2, 3, 5 and 6 have been determined by X-ray diffraction studies. The cytotoxic activity of 1-6 was tested against the tumour cell lines human adenocarcinoma HeLa, human myelogenous leukaemia K562, human malignant melanoma Fem-x and human breast carcinoma MDA-MB-361. The results of this study show a higher cytotoxicity of the tin(IV) and gallium(III) derivatives in comparison to their titanium(IV) counterparts. Furthermore, the different titanium compounds showed differences in their cytotoxicities with a higher activity of complex 4 (mono-(cyclopentadienyl) derivative) compared to that of 1-3 (bis-(cyclopentadienyl) complexes). A qualitative UV-vis study of the interactions of these complexes with DNA has also been carried out.  相似文献   

12.
A series of mono-cationic dinuclear half sandwich ruthenium, rhodium and iridium metal complexes have been synthesized using ((pyridin-2-yl)methylimino)nicotinamide (L1) and ((picolinamido)phenyl)picolinamide (L2) ligands: [(η6-arene)2Ru2(μ-L1)Cl3]+ (arene = C6H6, 1; p-iPrC6H4Me, 2; C6Me6, 3), [(η5-C5Me5)2M2(μ-L1)Cl3]+ (M = Rh, 4; Ir, 5), and [(η6-arene)2Ru2(μ-L2)(μ-Cl)]+ (arene = C6H6, 6; p-iPrC6H4Me, 7; C6Me6, 8), [(η5-C5Me5)2M2(μ-L2)Cl2]+ (M = Rh, 9; Ir, 10). All the complexes have been isolated as their hexafluorophosphate salts and fully characterized by use of a combination of NMR and IR spectroscopy. The solid state structure of three representatives 4, 6 and 9 has been determined by X-ray crystallographic studies. Interestingly, in the molecular structure of 4, the first metal is bonded to two nitrogen atoms whereas the second metal center is coordinated to only one nitrogen atom with two terminal chloride ligands. Fascinatingly in the case of the complexes with the symmetrical ligand L2, both ruthenium centers having η6-arene groups are bonded to nitrogen atoms with a bridging chloride atom between the two metal centers, whereas the metals with η5-Cp∗ groups are bonded to the ligand N,O and N,N fashion.  相似文献   

13.
The mononuclear cationic complexes [(η6-C6H6)RuCl(L)]+ (1), [(η6-p-iPrC6H4Me)RuCl(L)]+ (2), [(η5-C5H5)Ru(PPh3)(L)]+ (3), [(η5-C5Me5)Ru(PPh3)(L)]+ (4), [(η5-C5Me5)RhCl(L)]+ (5), [(η5-C5Me5)IrCl(L)]+ (6) as well as the dinuclear dicationic complexes [{(η6-C6H6)RuCl}2(L)]2+ (7), [{(η6-p-iPrC6H4Me)RuCl}2(L)]2+ (8), [{(η5-C5H5)Ru(PPh3)}2(L)]2+ (9), [{(η5-C5Me5)Ru(PPh3)}2(L)]2+ (10), [{(η5-C5Me5)RhCl}2(L)]2+ (11) and [{(η5-C5Me5)IrCl}2(L)]2+ (12) have been synthesized from 4,4′-bis(2-pyridyl-4-thiazole) (L) and the corresponding complexes [(η6-C6H6)Ru(μ-Cl)Cl]2, [(η6-p-iPrC6H4Me)Ru(μ-Cl)Cl]2, [(η5-C5H5)Ru(PPh3)2Cl)], [(η5-C5Me5)Ru(PPh3)2Cl], [(η5-C5Me5)Rh(μ-Cl)Cl]2 and [(η5-C5Me5)Ir(μ-Cl)Cl]2, respectively. All complexes were isolated as hexafluorophosphate salts and characterized by IR, NMR, mass spectrometry and UV-vis spectroscopy. The X-ray crystal structure analyses of [3]PF6, [5]PF6, [8](PF6)2 and [12](PF6)2 reveal a typical piano-stool geometry around the metal centers with a five-membered metallo-cycle in which 4,4′-bis(2-pyridyl-4-thiazole) acts as a N,N′-chelating ligand.  相似文献   

14.
Trichloro methyl [Nb{η5-C5H3(SiXMe2)(SiMe3)}Cl3Me] (X = Cl, 2; Me, 3), dichloro dimethyl [Nb{η5-C5H3(SiXMe2)(SiMe3)}Cl2Me2] (X = Cl, 4; Me, 5) and tetramethyl [Nb{η5-C5H3(SiXMe2)(SiMe3)}Me4] (X = Me, 6; Cl, 7) niobium complexes were synthesized by treatment of starting tetrachloro derivatives [Nb{η5-C5H3(SiXMe2)(SiMe3)}Cl4] (X = Cl, 1a; Me, 1b) with dimethyl zinc or chloro methyl magnesium in different proportions and conditions. A mixture of trichloro methyl and dichloro dimethyl tantalum complexes [Ta{η5-C5H3(SiClMe2)(SiMe3)}Cl4−xMex] (x = 1, 8; 2, 9) in a 2:1 molar ratio was obtained in the reaction of [Ta{η5-C5H3(SiClMe2)(SiMe3)}Cl4] (1c) with 0.5 equivalents of ZnMe2 in toluene at low temperature. 8 could be isolated as single compound when 1 equivalent of 1c was added to the mixtures of 8 and 9, while the reaction of 1c with 1.5 equivalents of dimethyl zinc gave 9 as unitary product. However, [Ta{η5-C5H3(SiMe3)2}Cl4] (1d) reacts with 0.5 equivalents of alkylating reagent giving the trichloro methyl compound [Ta{η5-C5H3(SiMe3)2}Cl3Me] (10) in good yield. On the other hand, [Ta{η5-C5H3(SiMe3)2}Cl4] (1d) reacts with 2 equivalents of MgClMe in hexane at room temperature giving a mixture of dichloro dimethyl and chloro trimethyl complexes[Ta{η5-C5H3(SiMe3)2}Cl4−xMex] (x = 2, 11; 3, 12), while the use of 4 equivalents of MgClMe converts 1c into the tetramethyl derivative [Ta{η5-C5H3(SiClMe2)(SiMe3)}Me4] (13). Finally, a tetramethyl tantalum complex [Ta{η5-C5H3(SiMe3)2}Me4] (14) was prepared by reaction of [Ta{η5-C5H3(SiXMe2)(SiMe3)}Cl4] (X = Cl, 1c; Me, 1d) with 5 (X = Cl) or 4 (X = Me) equivalents of MgClMe in diethyl ether (X = Cl) or hexane (X = Me), respectively, as solvent. All the complexes were studied by IR and NMR spectroscopy and the molecular structure of the complex 11 was determined by X-ray diffraction methods.  相似文献   

15.
Decamethyl-1,3-diboraruthenocene [(η5-C5Me5)Ru{η5-(CMe)3(BMe)2}] (1) reacts with cyclo-octasulfur in hexane to give [(η5-C5Me5){η5-(CMe)3(BMe)2}RuS] (3), which may also be obtained from 1 and propylene sulfide. 1 reacts with H2S to form the ruthenathiacarboranyl complex [(η5-C5Me5)Ru{η4-(CMe)3(BMe)2S}] (6), for which a nido-structure is proposed. The isomeric compounds 3 and 6 have different stabilities: 3 loses sulfur and unexpectedly the closo-cluster [(η5-C5Me5)2Ru2H(CMe)3(BMe)2] (4) is formed with hydrogen bridging the basal and apical Ru centers. Reaction of 1 with carbonylsulfide (COS) yields the dinuclear ruthenium compound [(η5-C5Me5)Ru{η5-(CMe)3(BMe)2(S)(COBMe)}]2 (7) in which two B-O groups bridge two ruthenium complexes. Its formation results from a complex reaction sequence: sulfur inserts into the diborolyl ring and the ligand CO forms an oxygen-boron bridge to a second molecule, followed by insertion of the carbonyl carbon into the double bond of the diboraheterocycle. Carbon disulfide reacts with 1 to give the dinuclear complex 8 with two CS2 molecules connecting the ruthenium centers. When 1 and P4 are heated in toluene, the sandwich 9 is obtained by formal insertion of a P-H group into the diborolyl ring of 1 and the triple-decker [{η5-(C5Me5)Ru}2{μ-(MeC)3P(MeB)2} (10) is detected in the mass spectrum. The phosphaalkyne PCtBu inserts into 1 to give the ruthenaphosphacarborane [(η5-C5Me5)Ru{(CMe)2(BMe)(PCtBu)(CMe)(BMe)}] (11) in high yield. Phosphanes react with 1 to give weak donor-acceptor complexes 1 · PH2R (12) (R=Ph, H). The compositions of the compounds are deduced from spectroscopic and analytical data and are confirmed for 4 and 7 by X-ray structural analyses.  相似文献   

16.
Ethylene polymerization studies have been carried out with novel precatalysts of the type: [(η5-C13H8)-X(t-BuOC6H12)Me-(η5-C5H4)]ZrCl2 [X=C [1a], Si [2a]], [(η5-C13H8)-XMe2-(η5-(t-BuOC6H12C5H3))] ZrCl2 [X=C [3a], Si [4a]] in the presence of excess methylalumoxane (MAO) to compare their catalytic activity and to delineate the effect of the 6-t-butoxyhexyl functionality on ethylene polymerization. The precatalysts [1a] and [2a] with the bridge functionality showed higher activity in ethylene polymerization than the corresponding complexes [3a] and [4a] which have it on the Cp ring moiety. On the other hand the silyl bridged complexes [2a] and [4a] produced a higher molecular weight polyethylene than the carbon-bridged one, regardless of the location of functional group.  相似文献   

17.
Reaction of Ph2PNHCH2-C4H3S with [Ru(η6-p-cymene)(μ-Cl)Cl]2, [Ru(η6-benzene)(μ-Cl)Cl]2, [Rh(μ-Cl)(cod)]2 and [Ir(η5-C5Me5)(μ-Cl)Cl]2 yields complexes [Ru(Ph2PNHCH2-C4H3S)(η6-p-cymene)Cl2], 1, [Ru(Ph2PNHCH2-C4H3S)(η6-benzene)Cl2], 2, [Rh(Ph2PNHCH2-C4H3S)(cod)Cl], 3 and [Ir(Ph2PNHCH2-C4H3S)(η5-C5Me5)Cl2], 4, respectively. All complexes were isolated from the reaction solution and fully characterized by analytical and spectroscopic methods. The structure of [Ru(Ph2PNHCH2-C4H3S)(η6-benzene)Cl2], 2 was also determined by single crystal X-ray diffraction. 1-4 are suitable precursors forming highly active catalyst in the transfer hydrogenation of a variety of simple ketones. Notably, the catalysts obtained by using the ruthenium complexes [Ru(Ph2PNHCH2-C4H3S)(η6-p-cymene)Cl2], 1 and [Ru(Ph2PNHCH2-C4H3S)(η6-benzene)Cl2], 2 are much more active in the transfer hydrogenation converting the carbonyls to the corresponding alcohols in 98-99% yields (TOF ≤ 200 h−1) in comparison to analogous rhodium and iridium complexes.  相似文献   

18.
The mononuclear η5-cyclopentadienyl complexes [(η5-C5H5)Ru(PPh3)2Cl], [(η5-C5H5)Os(PPh3)2Br] and pentamethylcyclopentadienyl complex [(η5-C5Me5)Ru(PPh3)2Cl] react in the presence of 1 eq. of the tetradentate N,N′-chelating ligand 3,5-bis(2-pyridyl)pyrazole (bpp-H) and 1 eq. of NH4PF6 in methanol to afford the mononuclear complexes [(η5-C5H5)Ru(PPh3)(bpp-H)]PF6 ([1]PF6), [(η5-C5H5)Os(PPh3)(bpp-H)]PF6 ([2]PF6) and [(η5-C5Me5)Ru(PPh3)(bpp-H)]PF6 ([3]PF6), respectively. The dinuclear η5-pentamethylcyclopentadienyl complexes [(η5-C5Me5)Rh(μ-Cl)Cl]2 and [(η5-C5Me5)Ir(μ-Cl)Cl]2 as well as the dinuclear η6-arene ruthenium complexes [(η6-C6H6)Ru(μ-Cl)Cl]2 and [(η6-p-iPrC6H4Me)Ru(μ-Cl)Cl]2 react with 2 eq. of bpp-H in the presence of NH4PF6 or NH4BF4 to afford the corresponding mononuclear complexes [(η5-C5Me5)Rh(bpp-H)Cl]PF6 ([4]PF6), [(η5-C5Me5)Ir(bpp-H)Cl]PF6 ([5]PF6), [(η6-C6H6)Ru(bpp-H)Cl]BF4 ([6]BF4) and [(η6-p-iPrC6H4Me)Ru(bpp-H)Cl]BF4 ([7]BF4). However, in the presence of 1 eq. of bpp-H and NH4BF4 the reaction with the same η6-arene ruthenium complexes affords the dinuclear salts [(η6-C6H6)2Ru2(bpp)Cl2]BF4 ([8]BF4) and [(η6-p-iPrC6H4Me)2Ru2(bpp)Cl2]BF4 ([9]BF4), respectively. These compounds have been characterized by IR, NMR and mass spectrometry, as well as by elemental analysis. The molecular structures of [1]PF6, [5]PF6 and [8]BF4 have been established by single crystal X-ray diffraction studies and some representative complexes have been studied by UV–vis spectroscopy.  相似文献   

19.
The reactions of PhSe, PhS and Se2− with N-{2-(chloroethyl)}pyrrolidine result in N-{2-(phenylseleno)ethyl}pyrrolidine (L1), N-{2-(phenylthio)ethyl}pyrrolidine (L2), and bis{2-pyrrolidene-N-yl)ethyl selenide (L3), respectively, which have been explored as ligands. The complexes [PdCl2(L1/L2)] (1/7), [PtCl2(L1/L2)] (2/8), [RuCl(η6-C6H6)(L1/L2)][PF6] (3/9), [RuCl(η6-p-cymene)(L1/L2)][PF6] (4/10), [RuCl(η6-p-cymene)(NH3)2][PF6] (5) and [Ru(η6-p-cymene)(L1)(CH3CN)][PF6]2·CH3CN (6) have been synthesized. The L1-L3 and complexes were found to give characteristic NMR (Proton, Carbon-13 and Se-77). The crystal structures of complexes 1, 3-6, 9 and 10 have been solved. The Pd-Se and Ru-Se bond lengths have been found to be 2.353(2) and 2.480(11)/2.4918(9)/2.4770(5) Å, respectively. The complexes 1 and 7 have been explored for catalytic Heck and Suzuki-Miyaura coupling reactions. The value of TON has been found up to 85 000 with the advantage of catalyst’s stability under ambient conditions. The efficiency of 1 is marginally better than 7. The Ru-complexes 3 and 9 are good for catalytic oxidation of primary and secondary alcohols in CH2Cl2 in the presence of N-methylmorpholine-N-oxide (NMO). The TON value varies between 8.0 × 104 and 9.7 × 104 for this oxidation. The 3 is somewhat more efficient catalyst than 9.  相似文献   

20.
An easy and inexpensive three-step synthesis of new 2,3-dimethyl-1,4-diphenylcyclopentadiene (3) ligand and the titanium and zirconium homometallocene dichlorides [TiCl25-C5H-2,3-Me2-1,4-Ph2)2] (4), [ZrCl25-C5H-2,3-Me2-1,4-Ph2)2] (5), and the mixed ligand zirconium complex [ZrCl25-C5H-2,3-Me2-1,4-Ph2)(η5-C5H5)] (6) prepared thereof are described. The polymerization of ethene using 4-6/MAO catalysts revealed that zirconocene complexes 5 and 6 displayed moderate and high activity, respectively, whereas the titanium catalyst 4/MAO was inactive. The crystal structures of 4 and 5 were determined by X-ray crystallography.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号