首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
2.
The coordination chemistry of the fluorovinyl substituted phosphines PPh2(Z-CFCFH) and PPh2(E-CClCFH) with K2MX4 (M = Pd, Pt; X = Cl, Br, and I) salts has been investigated resulting in the first reported palladium(II) and platinum(II) complexes of phosphines containing partially fluorinated vinyl groups. The complexes have been characterised by a combination of multinuclear [1H, 13C{1H}, 19F, 31P{1H}] NMR spectroscopy, and IR/Raman spectroscopy. The single-crystal X-ray structures of trans-[PdX2{PPh2(CFCFH)}2], X = Cl (1), Br (2), I (3), trans-[PdCl2{PPh2(CClCFH)}2] (4), cis-[PtX2{PPh2(CFCFH)}2], X = Cl (5), Br (6), trans-[PtI2{PPh2(CFCFH)}2] (7), and both cis- and trans-[PtCl2{PPh2(CClCFH)}2] (8), have been determined. Results obtained from spectroscopic and crystallographic data suggest that replacement of a β-fluorine by hydrogen, whilst reducing the steric demand of the ligand, has little effect on the electronic character of the ligand. The presence of a proton in the vinyl group results in short proton-halide secondary interactions in the solid state (d(H?X) = 2.72(3) for 1, and 2.92(5) Å for 2) forming an infinite chain ribbon motif.  相似文献   

3.
Bimetallic alkylidene complexes of tungsten (R′O)2(ArN)WCH-SiR2-CHW(NAr)(OR′)2 (R = Me (1), Ph (2)) and (R′O)2(ArN)WCH-SiMe2SiMe2-CHW(NAr)(OR′)2 (3) (Ar = ; R′ = CMe2CF3) have been prepared by the reactions of divinyl silicon reagents R2Si(CHCH2)2 with known alkylidene compounds R′′-CHMo(NAr)(OR′)2. (R′′ = But, PhMe2C) Complexes 1-3 were structurally characterized. Ring opening metathesis polymerization (ROMP) of cyclooctene using compounds 1-3 as initiators led to the formation of high molecular weight polyoctenamers with predominant trans-units content in the case of 1 and 3 and predominant cis-units content in the case of 2.  相似文献   

4.
5.
6.
A Mo(0) complex containing a new tetraphosphine ligand [Mo(P4)(dppe)] (1; P4 = meso-o-C6H4(PPhCH2CH2PPh2)2, dppe = Ph2PCH2CH2PPh2) reacted with CO2 (1 atm) at 60 °C in benzene to give a Mo(0) carbonyl complex fac-[Mo(CO)(η3-P4O)(dppe)] (2), where the O abstraction from CO2 by one terminal P atom in P4 takes place to give the dangling P(O)Ph2 moiety together with the coordinated CO. On the other hand, reaction of 1 with TolNCS (Tol = m-MeC6H4) in benzene at 60 °C resulted in the incorporation of three TolNCS molecules to the Mo center, forming a Mo(0) isocyanide-isothiocyanate complex trans,mer-[Mo(TolNC)22-TolNCS)(η3-P4S)] (4), where the S abstraction occurs from two TolNCS molecules by P4 and dppe to give the η3-P4S ligand and free dppeS, respectively, together with two coordinated TolNC molecules. The remaining site of the Mo center is occupied by the third TolNCS ligating at the CS bond in an η2-manner. The X-ray analysis has been undertaken to determine the detailed structures for 2 and 4.  相似文献   

7.
8.
9.
Rigid-rod structured homobimetallic palladium complexes of type [{trans-(Me(O)CS-4-C6H4-C6H4)(Ph3P)2Pd}2(μ-NN)](OTf)2 (8a, μ-NN = 4,4′-bipyridine, bpy; 8b, μ-NN = C5H4N-CHN-NCH-C5H4N; 8c, μ-NN = C5H4N-CHCH-C6H4-CHCH-C5H4N; 8d, μ-NN = C5H4N-CHN-C6H4-NCH-C5H4N) were synthesized by the reaction of trans-[(Me(O)CS-4-C6H4-C6H4)(Ph3P)2Pd](OTf) (6) with 0.5 equivalents of NN (7a, NN = bpy; 7b, NN = C5H4N-CHN-NCH-C5H4N; 7c, NN = C5H4N-CHCH-C6H4-CHCH-C5H4N; 7d, NN = C5H4N-CHN-C6H4-NCH-C5H4N) in high yield. Complex 6 was accessible by the subsequent reaction of I-4-C6H4-C6H4-4′-SC(O)Me (2) with [(PPh3)4Pd] (3) to produce trans-[(I)(Me(O)CS-4-C6H4-C6H4)(Ph3P)2Pd] (4) which further reacted with AgOTf (5) to give 6.The structures of 4 and 8c in the solid state are reported. Most characteristic for these systems is the square-planer coordination geometry of palladium with trans-positioned PPh3 groups. This automatically positions the iodo ligand and the Me(O)CS-4-C6H4-C6H4 unit (complex 4) or the nitrogen donor atoms of the C5H4N-CHCH-C6H4-CHCH-C5H4N connectivity and the thio-acetyl group Me(O)CS-C6H4-C6H4 (complex 8c) trans to each other. In 8c a Pd-Pd separation of 20.156 Å is typical.The electrochemical redox behavior of 2, 4 and 8 is discussed.  相似文献   

10.
Ligand effects on the catalytic activity [and norbornene (NBE) incorporation] for both ethylene polymerization and ethylene/NBE copolymerization using half-titanocenes (titanium half-sandwich complexes) containing ketimide ligand of type Cp′TiCl2[NC(R1)R2] [Cp′ = Cp (1), C5Me5 (Cp, 2); R1,R2 = tBu,tBu (a), tBu,Ph (b), Ph,Ph (c)]-methylaluminoxane (MAO) catalyst systems have been investigated. CpTiCl2[NC(tBu)Ph] (1b) CpTiCl2(NCPh2) (1c), and CpTiCl2(NCPh2) (2c) were prepared and identified; the structure of CpTiCl2(NCPh2) (2c) was determined by X-ray crystallography. The catalytic activity for ethylene polymerization increased in the order: 1a > 1b > 1c, suggesting that an electronic nature of the ketimide ligand affects the activity. However, molecular weight distributions for resultant (co)polymers prepared by 1b,c and by 2c-MAO catalyst systems were bi- or multi-modal, suggesting that the ketimide substituent plays a key role in order for these (co)polymerizations to proceed with single catalytically-active species. CpTiCl2(NCtBu2) (1a) exhibited both remarkable catalytic activity and efficient NBE incorporation for ethylene/NBE copolymerization.  相似文献   

11.
A series of heterobinuclear ferrocene-ruthenium complexes Fc(CHCH)nRuCl(CO)(PMe3)3 (n = 1, 3; n = 2, 12), Fc(CHCH)RuCl(CO)(Py)(PPh3)2 (4), and trimetallic Fc(CHCH)RuCl(CO)(PPh3)2(Py-E-(CHCH)Fc) (6) have been prepared. The length of the molecular rods is extended by successive insertion of CHCH spacers in the bridging ligands or the ancillary ligands. The respective products have been fully characterized and the structures of 3 and 12 have been established by X-ray crystallography. Electrochemical studies have revealed that ethenyl heterobimetallic complexes display two successive one-electron processes, and that intermetallic electronic communication between the two endgroups is attenuated with the increase of the length of the conjugated bridge. The electrochemical behavior of the trimetallic complex reveals strong electronic communication between ruthenium and ferrocene transmitted through the ethenyl bridge, however, it also reveals a very weak interaction between ruthenium and ferrocene transmitted through the (E)-CHCH-Py bridge.  相似文献   

12.
The reaction of 1,1,4,4-tetrakis[bis(trimethylsilyl)methyl]-1,4-diisopropyltetrasila-2-yne 1 with secondary or primary amines produced amino-substituted disilenes R(R2′N)SiSiHR 2a-d (R = SiiPr[CH(SiMe3)2]2, R2′NEt2N (2a), (CH2CH2)2N (2b), tBu(H)N (2c), and Ph2N (2d)). Spectroscopic and X-ray crystallographic analyses of 2 showed that 2a-c have a nearly coplanar arrangement of the SiSi double bond and the amino group, giving π-conjugation between the SiSi double bond and the lone pair on the nitrogen atom, whereas 2d has a nearly perpendicular arrangement precluding such conjugation. Theoretical calculations indicate that π-conjugation between the π-orbital of the SiSi double bond and the lone pair on the nitrogen atom is markedly influenced by the torsional angle between the SiSi double-bond plane and the amino-group plane.  相似文献   

13.
Treatment of the thiosemicarbazones 4-FC6H4C(Me)NN(H)C(S)NHR, (R = Me, a; Ph, b) and 2-ClC6H4C(Me)NN(H)C(S)NHR (R = Ph, c) with lithium tetrachloropalladate(II) in methanol or palladium(II) acetate in acetic acid gave the tetranuclear cyclometallated complex [Pd{4-FC6H3C(Me)NNC(S)NHR}]4 (1a, 1b) and [Pd{2-ClC6H3C(Me)NNC(S)NHPh}]4 (1c). Reaction of these tetramers with the diphosphines dppe, t-dppe, dppp or dppb in a 1:2 molar ratio gave the dinuclear cyclometallated complexes [(Pd{4-FC6H3C(Me)NNC(S)NHR})2(μ-Ph2P(CH2)nPPh2)], (n = 2, 2a, 2b; 3, 4a, 4b; 4, 5a, 5b), [(Pd{4-FC6H3C(Me)NNC(S)NHPh})2(μ-Ph2PCHCHPPh2)], (3a, 3b) and [(Pd{2-ClC6H3C(Me)NNC(S)NHR})2(μ-Ph2P(CH2)nPPh2)], (n = 2, 2c, 2d; 3, 4c, 4d; 4, 5c, 5d), [(Pd{2-ClC6H3C(Me)NNC(S)NHPh})2(μ-PPh2CHCHPPh2)], (3c, 3d). The X-ray crystal structure of the ligand b and the complexes 3c, 4a and 4d were determined. The structures of complexes 4a and 4d show that the different disposition of the chain cyclometallated of the thiosemicarbazones (in the same orientation or in the opposite one) is due to the different H bonds produced.  相似文献   

14.
The multifunctional ligands [(Z)-FcCCSC(H)C(H)XR] [X = O, R = Me (2a); X = O, R = Et (2b); X = S, R = Ph (3); X = S, R = C6F5 (5)] and [(Z,Z)-Fc(SR)CC(H)SC(H)C(H)SR] [R = Ph (4), C6F5 (6)] have been prepared through hydroalkoxylation and hydrothiolation processes of the alkyne groups in the compound FcCCSCCH 1. Reactions between compound 3 and the carbonyl metals Co2(CO)8, Os3(CO)10(NCMe)2 and Fe2(CO)9 have allowed the synthesis of the polynuclear compounds [(Z)-{Co2(CO)6}(μ-η2-FcCCSC(H)C(H)SPh)] 9, [(Z)-Os3(CO)9(μ-CO){μ32-FcCCSC(H)C(H)(SPh)}] 10 and [(Z)-{Fe3(CO)9}[μ33-(CCS)-FcCCSC(H)C(H)(SPh)] 11. All the compounds have been characterized by elemental analysis, 1H and 13C{1H} NMR spectroscopy, mass spectrometry and the crystal structure of compounds [(Z)-FcCCSC(H)C(H)OMe] 2a and [{Co2(CO)6}2(μ-η22-FcCCSCCSiMe3)] 7 have been solved by X ray diffraction analysis.  相似文献   

15.
The diruthenium μ-allenyl complex [Ru2(CO)(NCMe)(μ-CO){μ-η12-C(H)CC(Me)(Ph)}(Cp)2][BF4], 3b, reacts with halide anions to yield the neutral derivatives [Ru2(CO)2(X){μ-η12-C(H)CC(Me)(Ph)}(Cp)2] [X = Cl, 4b; X = Br, 4c; X = I, 4d]. Complex 4b undergoes isomerization to the unprecedented bridging vinyl-chlorocarbene species [Ru2(CO)(μ-CO){μ-η13- C(Cl)C(H)C(Me)(Ph)}(Cp)2], 10, upon filtration of a CH2Cl2 solution through an alumina column.Complex 3b reacts with an excess of NaBH4 to give five products: the allene complex [Ru2(CO)2{μ-η22- CH2CC(Me)(Ph)}(Cp)2], 5; the hydride species trans-[Ru2(CO)2(μ-H){μ-η12-CHCC(Me)(Ph)}(Cp)2], 6, and cis-[Ru2(CO)2(μ-H){μ-η12-CHCC(Me)(Ph)}(Cp)2], 8; the vinyl-alkylidene [Ru2(CO)(μ-CO){μ-η13- C(H)C(H)C(Me)(Ph)}(Cp)2], 9; and the cluster [Ru3(CO)3(μ-H)3(Cp)3], 7.Studies on the thermal stabilities of 5, 6, 8 and 9 have suggested a plausible mechanism for the formation of these complexes and for the synthesis of 10.  相似文献   

16.
Reactions of Ru(CCPh)(PPh3)2Cp with (NC)2CCR1R2 (R1 = H, R2 = CCSiPri38; R1 = R2 = CCPh 9) have given η3-butadienyl complexes Ru{η3-C[C(CN)2]CPhCR1R2}(PPh3)Cp (11, 12), respectively, by formal [2 + 2]-cycloaddition of the alkynyl and alkene, followed by ring-opening of the resulting cyclobutenyl (not detected) and displacement of a PPh3 ligand. Deprotection (tbaf) of 11 and subsequent reactions with RuCl(dppe)Cp and AuCl(PPh3) afforded binuclear derivatives Ru{η3-C[C(CN)2]CPhCHCC[MLn]}(PPh3)Cp [MLn = Ru(dppe)Cp 19, Au(PPh3) 20]. Reactions between 8 and Ru(CCCCR)(PP)Cp [PP = (PPh3)2, R = Ph, SiMe3, SiPri3; PP = dppe, R = Ph] gave η1-dienynyl complexes Ru{CCC[C(CN)2]CRCH[CC(SiPri3)]}(PP)Cp (15-18), respectively, in reactions not involving phosphine ligand displacement. The phthalodinitrile C6H(CCSiMe3)(CN)2(NH2)(SiMe3) 10 was obtained serendipitously from (Me3SiCC)2CO and CH2(CN)2, as shown by an XRD structure determination. The XRD structures of precursor 7 and adducts 11, 12 and 17 are also reported.  相似文献   

17.
Whereas {Ru(dppm)Cp*}2(μ-CCCC) (2) is the only product formed by deprotonation of [{Ru(dppm)Cp*}2{μ(CCHCHC)}]+ with dbu, a mixture of 2 with Ru{CCCHCH(PPh2)2[RuCp*]}(dppm)Cp* (3) and {Cp*Ru(PPh2CHCCH-)}2 (4) is obtained with KOBut. A similar reaction with [{Ru(dppm)Cp*}2{μ(CCMeCMeC)}]+ (5) gave Ru{CCCMeCH(PPh2)2[RuCp*]}(dppm)Cp* (6). X-ray structures of 4, 5 and 6 confirm the presence of the 1-ruthena-2,4-diphosphabicyclo[1.1.1]pentane moiety, which is likely formed by an intramolecular attack of the deprotonated dppm ligand on C(1) of the vinylidene ligand. Protonation of {Ru(dppe)Cp*}2(μ-CCCC) (8-Ru) regenerates its precursor [{Ru(dppe)Cp*}2{μ(CCHCHC)}]2+ (7-Ru). Ready oxidation of the bis(vinylidene) complex affords the cationic carbonyl [Ru(CO)(dppe)Cp*]PF6 (9) (X-ray structure).  相似文献   

18.
The Rh(III)-thiolate complex [TpRh(SPh)2(MeCN)] (2; Tp = hydrotris(3,5-dimethylpyrazolyl)borate) readily undergoes substitution of MeCN by XyNC (Xy = 2,6-dimethylphenyl) to give the isocyanide complex [TpRh(SPh)2(XyNC)] (3), whereas reaction of 2 with terminal alkynes results in the formation of the rhodathiacyclobutene complex [TpRh(SPh){η2-CHCR(SPh)}] (4; R = aryl, alkyl). Molecular structures of 3 and 4 (R = CH2Ph) have been determined by single crystal X-ray diffraction. Complex 2 as well as [TpRh(cyclooctene)(MeCN)] have been found to catalyze regioselective addition of benzenethiol to terminal alkynes RCCH at 50 °C to give R(PhS)CCH2 in moderate to high yields. The above products are selectively formed when R = CH2Ph and n-C6H13, while cis-RCHCHSPh and RC(SPh)2CH3 are also obtained as by-products when R = p-MeOC6H4. Catalytic cycle involving 2 and 4 is proposed based on the mechanistic studies using NMR measurement.  相似文献   

19.
The trifluorovinyl phosphine complexes [Cp*RhCl2{PR3−x(CFCF2)x}] (1x = 1, a R = Ph, b Pri, c Et; 2x = 2, R = Ph) have been prepared by treatment of [Cp*RhCl(μ-Cl)]2 with the relevant phosphine. The salt [Cp*RhCl(CNBut){PPh2(CFCF2)}]BF4, 3, was prepared by addition of ButNC to 1a in the presence of NaBF4. The salt [Cp*RhCl{κP,κS-(CF2CF)PPh(C6H4SMe-2)}]BF4 was prepared as a mixture of cis (5a) and trans (5b) isomers by treatment of [Cp*RhCl(μ-Cl)]2 with the phosphine-thioether (CF2CF)PPh(C6H4SMe-2), 4, in the presence of NaBF4. The structures of 1a-c and 5a have been determined by single-crystal X-ray diffraction. Intramolecular dehydrofluorinative carbon-carbon coupling between pentamethylcyclopentadienyl and trifluorovinylphosphine ligands of 1a, 3 and 5 has been attempted. No reaction was observed on treatment of the neutral complex [Cp*RhCl2{PPh2(CFCF2)}], 1a, with proton sponge, however, 5a underwent dehydrofluorinative coupling to yield [{η5,κP,κS-(C5Me4CH2CFCF)PPh(C6H4SMe-2)}RhCl]BF4, 6. Other reactions, in particular addition of HF across the vinyl bonds of 5, occurred leading to a mixture of products. The cation of 3 underwent similar reactions.  相似文献   

20.
The metallacyclic complexes (OC)4MC(η2-NHCH2CHCHX)Fc (4; X = H) and (5; X = CH2OH) [M = Cr: a; Mo: b; W: c; Fc = ferrocenyl = CpFe(C5H4)] were obtained in good yields upon photo-decarbonylation of the bimetallic allylaminocarbene complexes (OC)5MC(NHCH2CHCHX)Fc (2; X = H)/(3; X = CH2OH). At room temperature complexes 2/3 exist as mixtures of E- and predominantly Z-isomers with regard to the C-N bond. The molecular structures of 4b and 4c were determined by X-ray diffraction analyses. The intermetallic communicative effects and the interplay of Fc and η2-alkene moieties of 4a and 4b were assessed by cyclovoltammetry. All complexes were also characterized in solution by one- and two-dimensional NMR spectroscopy (1H, 13C, 1H NOE, 1H/1H COSY, 13C/1H HETCOR).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号