首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
Thermolysis of the mixed-metal cluster PhCCo2MoCp(CO)8 (1) with the diphosphine ligand 2,3-bis(diphenylphosphino)maleic anhydride (bma) in CH2Cl2 leads to the sequential formation of the phosphido-bridged cluster Co2MoCp(CO)5221-C(Ph)CC(PPh2)C(O)OC(O)](μ-PPh2) (3) and the bis(phosphido)-bridged cluster Co2MoCp(CO)4311-C(Ph)CCC(O)OC(O)](μ-PPh2)2 (4). 3 and 4 have been isolated and characterized in solution by IR and NMR (1H, 13C, and 31P) spectroscopies, and the solid-state structures have been established by X-ray diffraction analyses. Both clusters contain 48e- and exhibit triangular Co2Mo cores. The structure of 3 reveals the presence of a phosphido moiety that bridges the Co-Co vector and a six-electron μ221-C(Ph)CC(PPh2)C(O)OC(O) ligand that caps one of the Co2Mo faces. The X-ray structure of 4 confirms that the five-electron η311- C(Ph)CCC(O)OC(O) ligand is σ-bound to the two cobalt centers in an η1 fashion and π-coordinated to the molybdenum center through a traditional η3-allylic interaction. The reaction between PhCCo2MoCp(CO)8 and the chiral diphosphine ligand 3,4-bis(diphenylphosphino)-5-methoxy-2(5H)-furanone (bmf) proceeds similarly, furnishing the phosphido-bridged cluster Co2MoCp(CO)5221-C(Ph)CC(PPh2)C(O)OCH(OMe)](μ-PPh2) (6), followed by conversion to Co2MoCp(CO)4311-C(Ph)CCC(O)OCH(OMe)](μ-PPh2)2 (7). The identities of clusters 6 and 7 have been ascertained by solution spectroscopic methods and X-ray crystallography. The overall molecular structure of cluster 6 is similar to that of cluster 3, except that the P-C(furanone ring) bond cleavage occurs with high regioselectivity and high diastereoselectivity. The cleavage of the remaining P-C(furanone ring) bond in cluster 6 gives rise to the bis(phosphido)-bridged cluster 7, whose structure is discussed relative to its bma-derived analogue 4. The diastereoselectivity that accompanies the formation of 6 and 7 is discussed relative to steric effects within the Co2Mo polyhedron. The cyclic voltammetric properties of cluster 3 have been examined, with three well-defined one-electron processes for the 0/+1, 0/−1, −1/−2 redox couples found. The composition of the HOMO and LUMO in 3 was established by extended Hückel MO calculations, with the data discussed relative to the parent tetrahedrane cluster 1.  相似文献   

2.
Thermolysis or Me3NO activation of the hexaruthenium cluster Ru66-C)(CO)17 in the presence of the diphosphine ligand 1,2-bis(diphenylphosphino)benzene (dppbz) does not furnish the expected dppbz-substituted cluster Ru66-C)(CO)15(dppbz) but rather HRu65-C)(μ3-P)(CO)14(dppbz), whose edge-bridged square-pyramidal structure has been established by X-ray crystallography. Accompanying the opening of the original closo Ru6 polyhedron is the dephosphination of a second dppbz ligand through three rapid P-C bond cleavages, leading to the capture of the phosphorus atom as a face-capping phosphido ligand. This unprecedented reactivity between Ru66-C)(CO)17 and the dppbz ligand is discussed relative to other diphosphine ligands.  相似文献   

3.
The chemical or electrochemical reduction of the trifluoroacetyl complex Co(CO)3(PPh3)(COCF3) involves a single electron transfer yielding trifluoromethyl radical and an anionic cobalt carbonyl complex. The mechanism is proposed to involve electron transfer followed by initial dissociation of either a carbonyl or phosphine ligand from the 19-electron [Co(CO)3(PPh3)(COCF3)] anion. The resulting 17-electron intermediate undergoes subsequent one-electron reductive elimination of trifluoromethyl radical by homolytic cleavage of the carbon-carbon bond of the trifluoroacetyl group. The radical can be trapped by either benzophenone anion, forming the anion of α-(trifluoromethyl)benzhydrol, or Bu3SnH, yielding CF3H. The ultimate organometallic product is an 18-electron anion, either [Co(CO)4] or [Co(CO)3(PPh3)], depending upon which ligand is initially lost. Fluorine-containing products were identified and quantitated by 19F NMR while cobalt-containing products were determined by IR.  相似文献   

4.
The Ru-Ru single bond in [Ru2(CO)4(MeCN)6][BF4]2 remains intact in the reaction with 2-i-propyl-1,8-naphthyridine (iPrNP) and the isolated product is the cis-[Ru2(iPrNP)2(CO)4(OTf)2] (1) obtained via crystallization in the presence of [n-Bu4N][OTf]. The 2-t-butyl-1,8-naphthyridine (tBuNP), on the contrary, leads to the oxidative cleavage of the Ru-Ru single bond resulting in the trans-[Ru(tBuNP)2(MeCN)2][BF4]2[NC(Me)C(Me)N] (2). The anti-[NC(Me)C(Me)N]2− is the product of the two-electron reductive coupling of two acetonitrile molecules. The phenoxo appendage in 2-(2-hydroxyphenyl)-1,8-naphthyridine (hpNP) brings the identical effect of the scission of the Ru-Ru bond but the process is non-oxidative and the product obtained is the cis-[Ru(hpNP)2(CO)2][BF4] (3). The bis-(diphenylphosphino)methane (dppm) in dichloromethane oxidatively cleave the Ru-Ru bond leading to chloro bridged [Ru(μ-Cl)(dppm)(CO)(MeCN)]2[BF4]2 (4). All the complexes have been characterized by the spectroscopic and electrochemical measurements and their structures have been established by X-ray diffraction study.  相似文献   

5.
The reaction between the triosmium cluster 1,2-Os3(CO)10(MeCN)2 and the diphosphine pincer ligand 4,6-bis(diphenylphosphinomethyl)-m-xylene (dppx) has been examined and found to yield the pincer-bridged cluster 1,2-Os3(CO)10(dppx) (2) as the major product, in addition to the pincer-bridged cluster 1,2-Os3(CO)10[1-diphenylphosphino-1-{(2,4-dimethyl-5-diphenylphosphinomethyl)phenyl}-propan-2-ol] (3) in trace amounts (<2% yield). Both cluster products have been isolated and their molecular structures determined by crystallographic analyses. The structural highlights of compounds 2 and 3, which represent the first examples of pincer-ligated metal clusters, are discussed. The origin of the functionalized diphosphine ligand in 3 is traced to the ethanol solvent that was used in the recrystallization of the dppx ligand.  相似文献   

6.
Reactions of Os3(CO)12 with 1,8-bis(diphenylphosphino)naphthalene (dppn) are described. Crystallographically characterised complexes isolated from a reaction carried out in refluxing toluene are Os3(μ-H)2{μ-PPh2(nap)PPh(C6H4)}2(CO)6 (1), Os3(μ-H){μ3-PPh2(nap)PPh(C6H4)}(CO)8 (2) and Os2(μ-PPh2){μ-PPh2(nap)}(CO)5 (3) (nap=1,8-C10H6), while at r.t. in the presence of ONMe3, only Os3(CO)11{PPh2(1-C10H7)} (4) was isolated. While 1 and 2 contain ligands formed by metallation of a Ph group of dppn, as found also in complexes obtained from dppn and Ru3(CO)12, ligands in 3 and 4 are formed by cleavage of a P-nap bond, not found in the Ru series.  相似文献   

7.
PdCl2(PPh3)2 reacted with NaOAr (Ar = Ph, p-tolyl) at 0 °C to afford PdCl(Ph)(PPh3)2, instead of PdCl(OAr)(PPh3)2, in 12-16% isolated yields based on Pd. The structure was confirmed by NMR and X-ray crystallography. GC-MS analysis of the reaction solution revealed that OPPh2(OAr), OPPh(OAr)2, and OP(OAr)3 are formed, while NMR studies indicated that PdCl(Ph)(PPh3)2 is produced when PdCl(OAr)(PPh3)2 decomposes. The reaction of PdCl2(PPh3)2 with Bu3Sn(OC6H4-p-OMe) also gave PdCl(Ph)(PPh3)2 in 8% isolated yield. These results suggest that PdCl(OAr)(PPh3)2 is highly labile and the aryloxy ligand exchanges with the phenyl groups in triphenylphosphine even under very mild conditions.  相似文献   

8.
The triosmium cluster 1,2-Os3(CO)10(MeCN)2 reacts rapidly with the diphosphine ligand 2,3-bis(diphenylphosphino)-N-p-tolylmaleimide (bmi) at room temperature to give bmi-bridged cluster 1,2-Os3(CO)10(bmi) (2b) as the major product, along with the chelating isomer 1,1-Os3(CO)10(bmi) (2c) and the hydride-bridged cluster HOs3(CO)9[μ-(PPh2)CC{PPh(C6H4)}C(O)N(tolyl-p)C(O)] (3) as minor by-products. All three cluster compounds have been isolated and fully characterized in solution by IR and NMR spectroscopies (1H and 31P), and X-ray crystallography in the case of 2c. Cluster 2b is unstable and readily isomerizes to 2c in quantitative yield on mild heating. The kinetics for the conversion of 2b → 2c have been measured over the temperature range of 318-348 K in toluene solution, and based on the observed activation parameters a nondissociative isomerization process that proceeds via a transient μ2-bridged phosphine moiety is presented. Near-UV photolysis of cluster 2c at room temperature affords HOs3(CO)9[μ-(PPh2)CC{PPh(C6H4)}C(O)N(tolyl-p)C(O)] (3) with a quantum yield of 0.017. The reactivity of clusters 2b, 2c, and 3 is discussed with respect to related diphosphine-substituted Os3(CO)10(P-P) clusters prepared by our groups.  相似文献   

9.
The ruthenium-tin complex, [Ru2(CO)4(SnPh3)2(μ-pyS)2] (1), the main product of the oxidative-addition of pySSnPh3 to Ru3(CO)12 in refluxing benzene, is [Ru(CO)2(pyS)(SnPh3)] synthon. It reacts with PPh3 to give [Ru(CO)2(SnPh3)(PPh3)(κ2-pyS)] (2) and further with Ru3(CO)12 or [Os3(CO)10(NCMe)2] to afford the butterfly clusters [MRu3(CO)12(SnPh3)(μ3-pyS)] (3, M=Ru; 4, M=Os). Direct addition of pySSnPh3 to [Os3(CO)10(NCMe)2] at 70 °C gives [Os3(CO)9(SnPh3)(μ3-pyS)] (5) as the only bimetallic compound, while with unsaturated [Os3(CO)83-PPh2CH2P(Ph)C6H4}(μ-H)] the previously reported [Os3(CO)8(μ-pyS)(μ-H)(μ-dppm)] (6) and the new bimetallic cluster [Os3(CO)7(SnPh3){μ-Ph2PCH2P(Ph)C6H4}(μ-pyS)[(μ-H)] (7) are formed at 110 °C. Compounds 1, 2, 4, 5 and 7 have been characterized by X-ray diffraction studies.  相似文献   

10.
New hexa-coordinated Ru(II) complexes of the type [RuCl2(DMSO)2(diamine)] (diamine = o-phenylenediamine and ethylenediamine) have been prepared by reacting cis-[RuCl2(DMSO)4] with Schiff bases (H2sal-en, 1; H2nap-en, 2; H2sal-o-pdn, 3; H2nap-o-pdn, 4) in a 1:1 ratio. The ligands, which were expected to act as tetradentate (N2O2) chelates under the normal reaction conditions, were found to undergo hydrolytic cleavage to form the diamine and the corresponding aldehyde. All the complexes have been characterized by analytical and spectroscopic (IR, electronic and1H NMR) data. Single-crystal X-ray analysis of the complex [RuCl2(DMSO)2(o-pndn)] revealed that the coordination environment around the ruthenium metal consists of a N2S2Cl2 octahedron.  相似文献   

11.
Calcium-for-strontium substituted samples of the misfit-layered cobalt-oxide system, [(Sr1−xCax)2(O,OH)2]q[CoO2], were successfully synthesized up to x=0.2 with a sample-encapsulation technique originally developed for the x=0 end phase. While the x=0 sample has a commensurate match between the two layer blocks (i.e. q=0.5), isovalent Ca-for-Sr substitution induces lattice misfit (i.e. q>0.5). At the same time the Seebeck coefficient gets increased, but the increase in resistivity results in suppressing the thermoelectric power factor. The magnetic anomaly in the x=0 sample gets released upon the Ca substitution for the x=0.2 sample to exhibit an almost Curie-Weiss behavior. It is concluded that with increasing x in [(Sr1−xCax)2(O,OH)2]q[CoO2] the properties smoothly evolve towards those previously reported for the x=1.0 end member, [Ca1.7O2.1H2.4]0.58[CoO2].  相似文献   

12.
The synthesis, derivatization and coordination behavior of a new aminobis(diphosphonite), PhN{P(OC6H4OMe-o)2}2 (1) is described. The ligand 1 reacts with H2O2, elemental sulfur or selenium to give the corresponding dichalcogenides PhN{P(E)(OC6H4OMe-o)2}2 (E = O, 2; S, 3; Se, 4) in good yield. Reactions of 1 with Mo(CO)6, Pd(NCCH3)2Cl2 and Pt(COD)Cl2 resulted in the formation of the chelate complexes, Mo(CO)4[PhN{P(OC6H4OMe-o)2}2] (5) and MCl2[PhN{P(OC6H4OMe-o)2}2] (M = Pd,7; M = Pt, 8) whereas in the reaction of 1 with [CpFe(CO)2]2, one of the P-N bonds cleaves due to the metal assisted hydrolysis to give a mononuclear complex, [CpFe(CO){P(O)(OC6H4OMe-o)2}{PhN(H)(P(OC6H4OMe-o)2)}] (6). The molecular structures of 1, 4, 5 and 6 are determined by X-ray studies.  相似文献   

13.
Knoevenagel condensation of 4,5-bis(diphenylphosphino)-4-cyclopenten-1,3-dione (bpcd) with thiophene-2-carboxaldehyde furnishes the second-generation unsaturated diphosphine ligand 2-(2-thienylidene)-4,5-bis(diphenylphosphino)-4-cyclopenten-1,3-dione (1, tbpcd) in high yield. The substitution chemistry of the rhenium compounds BrRe(CO)5 and BrRe(CO)3(THF)2 with tbpcd has been investigated and found to produce fac-BrRe(CO)3(tbpcd) (2). Compounds 1 and 2 have been isolated and fully characterized in solution by IR and NMR (1H and 31P) spectroscopies, in addition to mass spectrometry, and X-ray crystallography. The redox properties of 1 and 2 have been examined by cyclic voltammetry, and these data are discussed relative to the results obtained from extended Hückel MO calculations and emission spectroscopic studies, as well as related ligand derivatives previously prepared by us. Our data indicate that the lowest excited state in tbpcd and fac-BrRe(CO)3(tbpcd) arises from a π → π intraligand (IL) transition confined exclusively to the tbpcd ligand.  相似文献   

14.
The synthesis and crystal structures of 4,5-bis[(triorganotin)thiolato]-1,3-dithiole-2-thione, (R3Sn)2(dmit), 1, and 4,5-bis[(triorganotin)thiolato]-1,3-dithiole-2-one, (R3Sn)2(dmio), 2, compounds are reported. Compounds, (1 or 2: R = Ph or cyclohexyl, Cy), have been obtained from reaction of R3SnCl with Cs2dmit or Na2dmio. The presence of the two tin centres in (2: R = Ph) is shown in the 13C NMR spectrum by the couplings of both Sn atoms to the dmio olefinic carbons with J values of 29.4 and 24.7 Hz. The δ119 Sn values for (1: R = Ph) and (2: R = Ph) differ by about 30 ppm, values being −20.7 and −50.1 ppm, respectively, in CDCl3 solution. X-ray structure determinations for (1: R = Ph) and (2: R = Ph or Cy) reveal the compounds to have 4-coordinate, distorted tetrahedral tin centres. The dithiolato ligands, dmit and dmio, act as bridging ligands, in contrast to their chelating roles in R2Sn(dmit) and R2Sn(dmio). A further difference between R2Sn(dmit) and R2Sn(dmio), on one hand, and 1 and 2 on the other, is that intermolecular Sn-S and Sn-O interactions are absent in 1 and 2. However, weak intermolecular hydrogen bonding interactions are found in (1: R = Ph) [C-H?π] and in (2: R = Ph) [C-H?π and C-H?O].  相似文献   

15.
Allyl alcohols undergo oxidative cleavage, affording the corresponding carbonyl compounds in good yields, when treated with ozone-lead(IV) acetate under mild conditions.  相似文献   

16.
Reaction of Co2(CO)8 with 4,6-bis(diphenylphosphino)dibenzofuran (1) in diethylether gives the dinuclear complex 4,6-bis(diphenylphosphino)dibenzofurandicobalthexacarbonyl (2). The solid state structures of 1 and 2 have been established by X-ray crystallography. Low temperature 13C-NMR spectroscopy was used to analyse 2 in solution.  相似文献   

17.
Ab initio method is employed to study the structures of twelve aromatic ketones at HF/3-21G, HF/6-31G and HF/6-31G* levels, respectively. A theoretical analysis is also carried out to study the regioselectivity and reactivity of aromatic ketones in the addition with olefin catalyzed by RuH2(CO)(PPh3)3. The results indicate that a U shape LUMO conjugation of aromatic ketones in a plane plays an important role in regioselectivity on the cleavage of β C-H bond and is a necessary factor to success of addition with olefin, and that steric effect is an indispensable factor in forming additional ortho-product. Meanwhile, electronic effect may influence the rate of addition for the structures alike which only have different replacements in the same site of aromatic ring, such as furan, thiophene and pyrole. A possible catalytic reaction mechanism is proposed that the addition of C-H bond may be carried out by a coordination of aromatic ketones with Ru complex.  相似文献   

18.
19.
The complex, [(PhCH2)2{O2CC6H4{N(H)N(C6H3-4(O)-5-O)}-o}Sn]2 (1), is obtained as the exclusive reaction product from the reaction of sodium 2-[(E)-2-(3-formyl-4-hydroxyphenyl)-1-diazenyl]benzoate and (PhCH2)3SnCl. The reaction possibly proceeds via Dakin type rearrangements where arylazosalicylaldehyde is oxidized to arylazocatechol, followed by facile Sn-C bond cleavage. Complete assignments were achieved by 1H, 13C, 2D 1H-119Sn HMQC (119Sn chemical shift), 1D gs 1H-15N HMQC (1J(15N, 1H) coupling constant) NMR and ESI-MS. The crystal structure of compound 1 as determined by X-ray diffraction analyses shows a cyclic centrosymmetric dinuclear moiety linked into extended chains by pairs of long Sn?O contacts of approximately 3.2 Å. Two polymorphs were identified and their structures differ primarily in the packing arrangement afforded by the benzyl groups. In one polymorph, when viewed along the Sn?Sn vector, the benzyl groups at each Sn-atom are oriented to form an S-shape, while they form a U-shape in the second polymorph.  相似文献   

20.
The reaction of [CpRu(CH3CN)3]PF6 with the bidentate ligands L-L=1,2-bis(diphenylphosphino)ethane, dppe, and (1-diphenylarsino-2-diphenylphosphino)ethane, dpadppe, affords mononuclear or dinuclear complexes of formula [CpRu(η2-L-L)(CH3CN)]PF6, [{CpRu(CH3CN)2}2(μ-η1:1-L-L)](PF6)2 and [{CpRu(CH3CN)}2(μ-η1:1-L-L)2](PF6)2 (L-L=dppe, dpadppe). All of the compounds are characterized by microanalysis and NMR [1H and 31P{1H}] spectroscopy. The crystal structure of [{CpRu(CH3CN)2}2(μ-η1:1-dppe)](PF6)2 has been determined by X-ray diffraction analysis. The complex exhibits a dppe ligand bridging two CpRu(CH3CN)2 fragments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号