首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The fac-[Re(CO)3(2,2′-biquinoline)Cl] complex has been obtained in reaction of Re(CO)5Cl with 2,2′-biquinoline. The compound has been studied by IR, UV–Vis spectroscopy and X-ray crystallography. The molecular orbital diagram of the tricarbonyl has been calculated with the density functional theory (DFT) method. The spin-allowed singlet–singlet electronic transitions of [Re(CO)3(2,2′-biquinoline)Cl] have been calculated with the time-dependent DFT method, and the UV–Vis spectrum of the title compound has been discussed on this basis.  相似文献   

3.
The reactions of [Fe3(CO)12] or [Ru3(CO)12] with RNC (R=Ph, C6H4OMe-p or CH2SO2C6H4Me-p) have been investigated using electrospray mass spectrometry. Species arising from substitution of up to six ligands were detected for [Fe3(CO)12], but the higher-substituted compounds were too unstable to be isolated. The crystal structure of [Fe3(CO)10(CNPh)2] was determined at 150 and 298 K to show that both isonitrile ligands were trans to each other on the same Fe atom. For [Ru3(CO)12] substitution of up to three COs was found, together with the formation of higher-nuclearity clusters. [Ru4(CO)11(CNPh)3] was structurally characterised and has a spiked-triangular Ru4 core with two of the CNPh ligands coordinated in an unusual μ32 mode.  相似文献   

4.
Vibrational and structural dynamics of two transition metal carbonyl complexes, Mn(CO)5Br and Re(CO)5Br were examined in DMSO, using ultrafast infrared pump-probe spectroscopy, steady-state linear infrared spectroscopy and quantum chemistry computations. Two carbonyl stretching vibrational modes (a low-frequency A1 mode and two high-frequency degenerate E modes) were used as vibrational probes. Central metal effect on the CO bond order and force constant was responsible for a larger E-A1 frequency separation and a generally more red-shifted E and A1 peaks in the Re complex than in the Mn complex. A generally broader spectral width for the A1 mode than the E mode is believed to be partially due to vibrational lifetime effect. Vibrational mode-dependent diagonal anharmonicity was observed in transient infrared spectra, with a generally smaller anharmonicity found for the E mode in both the Mn and Re complexes.  相似文献   

5.
The paper presents a combined experimental and computational study of novel tricarbonyl complex – fac-[Re(CO)3(tp)2Cl] (tp = 1,2,4-triazolo-[1,5-a]pyrimidine). The compound has been characterized spectroscopically and structurally (by single-crystal X-ray diffraction). The absorption and emission spectra of the complex have been discussed on the basis of DFT and time-dependent (TD)DFT calculations.  相似文献   

6.
Novel [ReOX(quin-2-c)2] complexes (X = Cl, Br; quin-2-c = quinoline-2-carboxylate ion) have been prepared by treatment of [ReOX3(AsPh3)2] with an excess of quinoline-2-carboxylic acid in acetonitrile. The complexes were characterised structurally and spectroscopically. The electronic structure of [ReOBr(quin-2-c)2] has been calculated with the density functional theory (DFT) method, and additional information about binding has been obtained by NBO analysis. The UV–Vis spectrum of [ReOBr(quin-2-c)2] has been discussed on the basis of TD-DFT calculations.  相似文献   

7.
B. Machura  M. Wolff  J. Kusz  R. Kruszynski   《Polyhedron》2009,28(14):2949-2964
The paper presents a combined experimental and computational study of mono- and disubstituted Re(V) oxocomplexes obtained in the reactions of [ReOX3(EPh3)2] (X = Cl, Br; E = P, As) with 2-(2-hydroxyphenyl)-1H-benzimidazole (Hhpb). From the reactions of [ReOX3(PPh3)2] with Hhpb in molar ratio 1:1 cis and trans stereoisomers of [ReOX2(hpb)(PPh3)] were isolated, whereas the [ReOX3(AsPh3)2] oxocompounds react with Hhpb to give only cis-halide isomers. The [ReOX2(hpb)(EPh3)] and [ReO(OMe)(hpb)2]·MeCN complexes have been characterized spectroscopically and structurally (by single-crystal X-ray diffraction). The DFT and TDDFT calculations have been carried out for the trans-[ReOBr2(hpb)(PPh3)], cis-[ReOBr2(hpb)(AsPh3)] and [ReO(OMe)(hpb)2], and their UV–Vis spectra have been discussed on this basis.  相似文献   

8.
The reactions of [RuHCl(CO)(PPh3)3] and [(C6H6)RuCl2]2 with 2-benzoylpyridine have been examined, and two novel ruthenium(II) complexes – [RuCl(CO)(PPh3)2(C5H4NCOO)] and [RuCl2(C12H9NO)2] – have been obtained. The compounds have been studied by IR and UV–Vis spectroscopy, and X-ray crystallography. The molecular orbital diagrams of the complexes have been calculated with the density functional theory (DFT) method. The spin-allowed singlet–singlet electronic transitions of the compounds have been calculated with the time-dependent DFT method, and the UV–Vis spectra of the compounds have been discussed on this basis.  相似文献   

9.
KHFe(CO)4 reacts with tris(amino)phosphines by substitution at phosphorus leading to [bis(amino)phosphine]tetracarbonyliron complexes [(R1R2N)2PH]Fe(CO)4. The X-ray structure has been determined for R1=R2=Ph. Deprotonation of these complexes with KH affords stable potassium phosphidotetracarbonylferrates which can be alkylated or acylated at phosphorus.  相似文献   

10.
In this study selected bidentate (L2) and tridentate (L3) ligands were coordinated to the Re(I) or Tc(I) core [M(CO)2(NO)]2+ resulting in complexes of the general formula fac-[MX(L2)(CO)2(NO)] and fac-[M(L3)(CO)2(NO)] (M = Re or Tc; X = Br or Cl). The complexes were obtained directly from the reaction of [M(CO)2(NO)]2+ with the ligand or indirectly by first reacting the ligand with [M(CO)3]+ and subsequent nitrosylation with [NO][BF4] or [NO][HSO4]. Most of the reactions were performed with cold rhenium on a macroscopic level before the conditions were adapted to the n.c.a. level with technetium (99mTc). Chloride, bromide and nitrate were used as monodentate ligands, picolinic acid (PIC) as a bidentate ligand and histidine (HIS), iminodiacetic acid (IDA) and nitrilotriacetic acid (NTA) as tridentate ligands. We synthesised and describe the dinuclear complex [ReCl(μ-Cl)(CO)2(NO)]2 and the mononuclear complexes [NEt4][ReCl3(CO)2(NO)], [NEt4][ReBr3(CO)2(NO)], [ReBr(PIC)(CO)2(NO)], [NMe4][Re(NO3)3(CO)2(NO)], [Re(HIS)(CO)2(NO)][BF4], [99Tc(HIS)(CO)2(NO)][BF4], [99mTc(IDA)(CO)2 (NO)] and [99mTc(NTA)(CO)2(NO)]. The chemical and physical characteristics of the Re and Tc-dicarbonyl-nitrosyl complexes differ significantly from those of the corresponding tricarbonyl compounds.  相似文献   

11.
Reactions of the labile compound [Re2(CO)8(MeCN)2] with thiazole and 4-methylthiazole in refluxing benzene afforded the new compounds [Re2(CO)7{μ-2,3-η2-C3H(R)NS}{η1-NC3H2(4-R)S}(μ-H)] (1, R = H; 2, R = CH3), [Re2(CO)6{μ-2,3-η2-C3H(R)NS}{η1-NC3H2(4-R)S}2(μ-H)] (3, R = H; 4, R = CH3) and fac-[Re(CO)3(Cl){η1-NC3H2(4-R)S}2] (5, R = H; 6, R = CH3). Compounds 1 and 2 contain two rhenium atoms, one bridging thiazolide ligand, coordinated through the C(2) and N atoms and a η1-thiazole ligand coordinated through the nitrogen atom to the same Re as the thiazolide nitrogen. Compounds 3 and 4 contain a Re2(CO)6 group with one bridging thiazolide ligand coordinated through the C(2) and N atoms and two N-coordinated η1-thiazole ligands, each coordinated to one Re atom. A hydride ligand, formed by oxidative-addition of C(2)-H bond of the ligand, bridges Re-Re bond opposite the thiazolide ligand in compounds 1-4. Compound 5 contains a single rhenium atom with three carbonyl ligands, two N-coordinated η1-thiazole ligands and a terminal Cl ligand. Treatment of both 1 and 2 with 5 equiv. of thiazole and 4-methylthiazole in the presence of Me3NO in refluxing benzene afforded 3 and 4, respectively. Further activation of the coordinated η1-thiazole ligands in 1-4 is, however, unsuccessful and results only nonspecific decomposition. The single-crystal XRD structures of 1-5 are reported.  相似文献   

12.
Novel [ReOBr(hmquin-7-COOH)2] (1) and [ReOCl(hmquin-7-COOH)2] · MeCN (2 · MeCN) complexes have been prepared by treatment of [ReOX3(AsPh3)2] with an excess of 8-hydroxy-2-methylquinoline-7-carboxylic acid in acetonitrile. The compounds were characterized structurally and spectroscopically. The electronic structure of 1 has been calculated with the density functional theory (DFT) method, and additional information about binding has been obtained by NBO analysis. The UV–Vis spectrum of 1 has been discussed on the basis of TDDFT calculations.  相似文献   

13.
We have synthesised (Et4N)[ReBr2(NCCH3)2(CO)2] 1 in two steps from [ReBr3(CO)3]2−. Complex 1 is water and air stable and the two Br ligands are easily exchanged for coordinating solvent molecules such as water. The reactivity of 1 with several ligands such as imidazole (imz) and 2-picolinic acid (2-pic) are easily possible with substitution exclusively occurring in trans-position to the carbonyl groups. The resulting complexes [Re(imz)2(NCCH3)2(CO)2]+ and [Re(2-pic)(NCCH3)2(CO)2] have been isolated and structurally characterised. The two acetonitrile ligands are strongly bound and are not substituted under any conditions. Complex 1 represents therefore the new moiety “trans,cis-[Re(NCCH3)2(CO)2]+” which can be considered as a further building block in organometallic chemistry.  相似文献   

14.
Thermal reaction of the chloroaryl-chloride complexes trans-(η5-C5Me5)Re(CO)2(ArCl)Cl (ArCl = 3-ClC6H4, 3-ClC6H3(4-Me) and 3,5-Cl2C6H3) in acetonitrile did not interconvert to the cis isomer, instead the complex ReCl(CO)2(NCMe)3 and the corresponding 5-ArCl-1,2,3,4,5-pentamethylcyclopentadiene were formed. Similar reductive elimination products were obtained when the starting rhenium complexes were reacted with trimethylphosphite in toluene.  相似文献   

15.
Under mild hydrothermal conditions UO2(NO3)2·6H2O, Hg2(NO3)2·2H2O, and Na2HAsO4·7H2O react to form [Hg5O2(OH)4][(UO2)2(AsO4)2] (HgUAs-1). Single crystal X-ray diffraction experiments reveal that HgUAs-1 possesses a pseudo-layered structure consisting of two types of layers: and . The layers are complex, and contain three crystallographically unique Hg centers. The coordination environments and bond-valence sum calculations indicate that the Hg centers are divalent. The layers belong to the Johannite topological family. The and layers are linked to each other through μ2-O bridges that include Hg?O=U=O interactions.  相似文献   

16.
The reaction of the labile compound [Re2(CO)8(CH3CN)2] with 2,3-bis(2-pyridyl)pyrazine in dichloromethane solution at reflux temperature afforded the structural dirhenium isomers [Re2(CO)8(C14H10N4)] (1 and 2), and the complex [Re2(CO)8(C14H10N4)Re2(CO)8] (3). In 1, the ligand is σ,σ′-N,N′-coordinated to a Re(CO)3 fragment through pyridine and pyrazine to form a five-membered chelate ring. A seven-membered ring is obtained for isomer 2 by N-coordination of the 2-pyridyl groups while the pyrazine ring remains uncoordinated. For 2, isomers 2a and 2b are found in a dynamic equilibrium ratio [2a]/[2b]  =  7 in solution, detected by 1H NMR (−50 °C, CD3COCD3), coalescence being observed above room temperature. The ligand in 3 behaves as an 8e-donor bridge bonding two Re(CO)3 fragments through two (σ,σ′-N,N′) interactions. When the reaction was carried out in refluxing tetrahydrofuran, complex [Re2(CO)6(C14H10N4)2] (4) was obtained in addition to compounds 1-3. The dinuclear rhenium derivative 4 contains two units of the organic ligand σ,σ′-N,N′-coordinated in a chelate form to each rhenium core. The X-ray crystal structures for 1 and 3 are reported.  相似文献   

17.
A series of rhenium(I) tricarbonyl complexes, containing bidentate derivatives of aniline, was synthesized and structurally characterized. With 1,2-diaminobenzene (Hpda) the ‘2+1’ complex salt fac-[Re(CO)3(Hpda)2]Br was isolated. The neutral complex [Re(CO)3(Hapa)Br] was formed with 2-aminodiphenylamine (Hapa) as ligand. 2-Aminophenol (Hopa) also produced the neutral ‘2+1’ complex [Re(CO)3(opa)2(Hopa)], but with 2-mercaptophenol (Hspo) the bridged dimer [Re2(CO)7(spo)2] was found. In the complex [Re(CO)3(Htpn)Br] (Htpn = N′-{(2-methylthio)benzylidene}benzene-1,2-diamine) the potentially tridentate ligand Htpn is coordinated via the methylthio sulfur and imino nitrogen atoms only, with a free amino group.  相似文献   

18.
[Re(CO)6][BF4] reacts with HMPA to form [Re(CO)3(HMPA)3][BF4] (4), whose structure was determined by X-ray crystallography and proves to be a key intermediate in the ligand exchange reaction between three CO and Cp; and may be related to other cations such as [Re(CO)3(H2O)3]+, [Re(CO)3(CH3CN)3]+, [Re(CO)3(DMSO)3]+, obtained by different ways, and important in the field of organometallic radiopharmaceuticals.  相似文献   

19.
The compound [Re2(CO)8(MeCN)2] reacts with diazoindene (C9H6N2) while refluxing in THF to afford three dirhenium products in which C9H6N2 is cleaved with loss of N2 and with incorporation of the residual indenylidene group into the products. Two indenylidene groups are coupled in two diastereomers of [Re2(CO)6(μ,η55-1,1′-C18H12)] where C18H12=bis(indenylidene). X-ray structures show that these isomers are related as RR/SS and RS isomers. These have the two Re(CO)3 groups coordinated transoid and cisoid, respectively to a trans bis(indenylidene) bridge. The third product is the μ-indenylidene complex [Re2(CO)8(μ,η15-C9H6)], which was also structurally characterised by X-ray diffraction.  相似文献   

20.
Ag4(Mo2O5)(SeO4)2(SeO3) has been synthesized by reacting AgNO3, MoO3, and selenic acid under mild hydrothermal conditions. The structure of this compound consists of cis-MoO22+ molybdenyl units that are bridged to neighboring molybdenyl moieties by selenate anions and by a bridging oxo anion. These dimeric units are joined by selenite anions to yield zigzag one-dimensional chains that extended down the c-axis. Individual chains are polar with the C2 distortion of the Mo(VI) octahedra aligning on one side of each chain. However, the overall structure is centrosymmetric because neighboring chains have opposite alignment of the C2 distortion. Upon heating Ag4(Mo2O5)(SeO4)2(SeO3) looses SeO2 in two distinct steps to yield Ag2MoO4. Crystallographic data: (193 K; MoKα, λ=0.71073 Å): orthorhombic, space group Pbcm, a=5.6557(3), b=15.8904(7), c=15.7938(7) Å, V=1419.41(12), Z=4, R(F)=2.72% for 121 parameters with 1829 reflections with I>2σ(I). Ag2(MoO3)3SeO3 was synthesized by reacting AgNO3 with MoO3, SeO2, and HF under hydrothermal conditions. The structure of Ag2(MoO3)3SeO3 consists of three crystallographically unique Mo(VI) centers that are in 2+2+2 coordination environments with two long, two intermediate, and two short bonds. These MoO6 units are connected to form a molybdenyl ribbon that extends along the c-axis. These ribbons are further connected together through tridentate selenite anions to form two-dimensional layers in the [bc] plane. Crystallographic data: (193 K; MoKα, λ=0.71073 Å): monoclinic, space group P21/n, a=7.7034(5), b=11.1485(8), c=12.7500(9) Å, β=105.018(1) V=1002.7(2), Z=4, R(F)=3.45% for 164 parameters with 2454 reflections with I>2σ(I). Ag2(MoO3)3SeO3 decomposes to Ag2Mo3O10 on heating above 550 °C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号