首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The cyclopentadienylchromium carbonyl thiocarbonyls Cp2Cr2(CS)2(CO)n (n = 4, 3, 2, 1) have been studied by density functional theory using the B3LYP and BP86 functionals. The lowest energy Cp2Cr2(CS)2(CO)4 structure can be derived from the experimentally characterized unbridged Cp2Cr2(CO)6 structure by replacing the two terminal carbonyl groups furthest from the Cr-Cr bond with two terminal CS groups. The two lowest energy Cp2Cr2(CS)2(CO)3 structures have a single four-electron donor η2-μ-CS group and a formal Cr-Cr single bond of length ∼3.1 Å. In contrast to the carbonyl analogue Cp2Cr2(CO)5 these Cp2Cr2(CS)2(CO)3 structures are viable with respect to disproportionation into Cp2Cr2(CS)2(CO)4 and Cp2Cr2(CS)2(CO)2 and thus are promising synthetic targets. The lowest energy Cp2Cr2(CS)2(CO)2 structures have all two-electron donor CO and CS groups and short CrCr distances around ∼2.3 Å suggesting the formal triple bonds required to give the chromium atoms the favored 18-electron configurations. These Cp2Cr2(CS)2(CO)2 structures are closely related to the known structure for Cp2Cr2(CO)4. In addition, several doubly bridged structures with four-electron donor η2-μ-CS bridges are found for Cp2Cr2(CS)2(CO)2 at higher energies. The global minimum Cp2Cr2(CS)2(CO) structure is a triply bridged triplet with a CrCr triple bond (2.299 Å by BP86). A higher energy singlet Cp2Cr2(CS)2(CO) structure has a shorter Cr-Cr distance of 2.197 Å (BP86) suggesting the formal quadruple bond required to give each chromium atom the favored 18-electron configuration.  相似文献   

2.
With copper(I) iodide as catalyst, σ-alkynyls, compounds (η5-C5H5)Cr(NO)2(CC-C6H5) (5), [(η5-C5H4)-COOCH3]Cr(NO)2(CC-C6H5) (10), and [(η5-C5H4)-COOCH3]W(CO)3(CC-C6H5) (13), were prepared from their corresponding metal chloride 1, 6 and 12. Structures of compound 3, 5 and 12 have been solved by X-ray diffraction studies. In the case of 5, there is an internal mirror plane passing through the phenylethynyl ligand and bisecting the Cp ring. The phenyl group is oriented perpendicularly to the Cp with an eclipsed conformation. The twist angle is 0° and 118.4° for -CC-Ph and two NO ligands, respectively. The orientation is rationalized in terms of orbital overlap between ψ3 of Cp, dπ of Cr atom, and π of alkynyl ligand, and complemented by molecular orbital calculation. The opposite correlation was observed on the chemical shift assignments of C(2)-C(5) on Cp ring in compounds 6 and 12, using HetCOR NMR spectroscopy. The electron density distribution in the cyclopentadienyl ring is discussed on the basis of 13C NMR data and compared with the calculations via density functional B3LYP correlation-exchange method.  相似文献   

3.
由侧链带有噻吩的环戊二烯基配体C5H5C6H10C4H3S与Fe(CO)5在二甲苯中加热回流,合成了1个新颖的四羰基二铁配合物[(η5-C5H4)C6H10(C4H3S)Fe(CO)2]2。通过元素分析、IR、1H NMR对其结构进行了表征,用X-射线单晶衍射确定了其结构。X-射线单晶衍射表明配合物中有2个桥羰基和2个端羰基,Fe-Fe的键长为0.25465(10)nm。  相似文献   

4.
The structure and dynamic behavior of complex [(η5-C5H4CH3)Cr(CO)2(μ-SBu)Pt(PPh3)2] in solution was studied by multinuclear (1H, 13C, 31P) NMR spectroscopy including a phase-sensitive NOESY experiment. Increasing temperature causes rupture of the Cr-Pt bond in the three-membered ring of the complex and rotation of the S-Pt(PPh3)2 unit around the Cr-S bond line, followed by formation of a new Cr-Pt bond to close the ring. All activation parameters for this dynamic process have been determined.  相似文献   

5.
The synthesis of complexes of (η5C5H4P(O)Ph2)2Fe = L with lanthanide nitrates is described. The single crystal X-ray structures for La(NO3)3L(μ-L)La(NO3)3L (1), [Eu(NO3)2L2]2[Eu(NO3)5] (2), [Ho(NO3)2L2]2[Ho(NO3)5] (3) and [Lu(NO3)2L2] NO3 (4) are reported. Trends in Ln–O bond distances cannot be explained by the lanthanide contraction alone. The cyclic-voltammetric (CV) oxidation–reduction behaviour of 1, 2, 4 and Dy(NO3)3L2 · 2H2O is described. This was reversible on a timescale of a few seconds in all cases. In our hands the CV behaviour of L also seemed reversible on this timescale, although attempted chemical oxidation of L led to the isolation of [FeL2(NO3)2]NO3 (5) which was characterised by X-ray crystallography.  相似文献   

6.
The Cr-Cr singly-bonded dimers [{η5-RC5H4Cr(CO)3}2] (1, R=Me; 2, R=CO2Et) reacted with an equivalent of elemental selenium in THF at room temperature to give the linear Cr2Se complexes [{η5-RC5H4Cr(CO)2}2Se] (3, R=Me; 4, R=CO2Et), whereas the linear Cr2Se complex (5, R=MeCO) reacted with excess NaBH4, Ph3PCHPh or 2,4-dinitrophenylhydrazine under respective conditions to afford the linear Cr2Se derivatives [{η5-RC5H4Cr(CO)2}2Se] (6, R=MeCH(OH); 7, R=PhCHCMe; 8, R=2,4-(NO2)2C6H3NHNCMe). Similarly, while the butterfly Cr2Se2 complexes [{η5-RC5H4Cr(CO)2}2Se2] (9, R=Me; 10, R=CO2Et) could be produced either by reaction of dimers 1 and 2 with an excess amount of elemental selenium, or by reaction of the linear complexes 3 and 4 with an equivalent of elemental selenium, the butterfly Cr2Se2 derivatives [{η5-RC5H4Cr(CO)2}2Se2] (12, R=MeCH(OH); 13, R=PhCHCMe; 14, R=2,4-(NO2)2C6H3NHNCMe) were yielded by reaction of the butterfly Cr2Se2 complex (11, R=MeCO) with an excess quantity of NaBH4, Ph3PCHPh and 2,4-dinitrophenylhyazine. Both the linear complexes 3, 4, 6-8 and the butterfly complexes 9, 10, 12-14 are new, which have been fully characterized by elemental analysis, spectroscopy and X-ray crystallography.  相似文献   

7.
A series of multimetallic systems containing silicon-linked cyclopentadienyl dicarbonyl iron moieties including carbosilane dendrimers and cyclic and polymeric siloxanes have been prepared using hydrosilylation reactions. For this purpose the vinyl-substituted silyliron complex (η5-C5H5)Fe(CO)2Si(CH3)2 CHCH2 (1) was prepared by salt elimination reaction between Na[(η5-C5H5)Fe(CO)2] and ClSi(CH3)2CHCH2 and fully characterized. Hydrosilylation reaction of 1 with the appropriate Si-H functionalized molecules in the presence of Karstedt catalyst afforded the novel silyl carbonyl iron-functionalized cyclotetrasiloxane 2, dendrimer 3 and copolymer 4, in which the organometallic units are attached to the silicon-based frameworks through a two-methylene flexible spacer. The electrochemical behaviour of compounds 1-4 has been examined in dichloromethane, tetrahydrofuran and acetonitrile solutions using cyclic voltammetry.  相似文献   

8.
Treatment of [W(CO)5THF] with diferrocenyl diselenide, Fc2Se2, yielded the novel metal-metal bonded tungsten(I) complex, [W2(μ-SeFc)2(CO)8] (1: Fc = ferrocenyl, [Fe(η5-C5H5)(η5-C5H4)]), which was characterised by NMR and IR spectroscopy, mass spectrometry, and X-ray crystallography. The corresponding tellurium derivative could not be prepared by an analogous route. The X-ray crystal structure of Fc2Te2 has also been determined.  相似文献   

9.
New cis- and trans-3-aryl-4-[2-(2-vinylphenyl)ethenyl]sydnones 2, aryl = phenyl, p-tolyl were prepared and transformed on irradiation in the presence of acrolein to a pyrazoline derivative that aromatized during isolation to trans-1-tolyl-3-[2-(2-vinylphenyl)ethenyl]pyrazole 7 and trans-5-formyl-1-tolyl-3-[2-(2-vinylphenyl)ethenyl]pyrazole 8.  相似文献   

10.
Reaction of Mo(CO)3(NCMe)3 and PPh2(o-C6H4)C(O)H (abbreviated as PCHO) at room temperature affords Mo(CO)2(η3-PCHO)2 (1), while compound 1 and the phosphine-imine complex Mo(CO)4(η2-PPh2(o-C6H4)CHNMe) (2) are obtained by using Mo(CO)3(η3-(MeNCH2)3) as the reactant. Thermal reaction of 1 with C60 products Mo(CO)2(η4-(PPh2(o-C6H4)CH)2)(η2-C60) (3) in low yield, apparently through coupling of the formyl moieties. The structures of 1 and 3 have been determined by an X-ray diffraction study. The two aldehyde groups of 1 and C60 ligand of 3 are coordinated to the molybdenum atom in a π-fashion.  相似文献   

11.
New complexes of transition metals with organotellurium halide ligands are reported. Iodination of [CpMn(CO)2]2(μ-Ph2Te2) leads to the Te-Te bond cleavage and formation of CpMn(CO)2(PhTeI). Oxidative addition of PhTeBr3 to Fe(CO)5 gives the monomeric complex (CO)3FeBr2(PhTeBr) which is isostructural with the recently reported (CO)3FeI2(PhTeI). Insertion of phenyltellurenyl iodide (PhTeI) into the Fe-I bond of CpFe(CO)2I forms CpFe(CO)2(TeI2Ph). Molecular structures of the reported complexes were determined by single-crystal X-ray diffraction analysis (XRD). A considerable shortening of metal-tellurium distances is observed.  相似文献   

12.
The reaction of with p-CH3C6H4S(O)2O(CH2)3C6H5 produces (η5-C5H5)(OC)3Mo(CH2)3C6H5. This is only the second structurally characterized organometallic species in which an aromatic moiety is separated by three or more methylene groups. The alkyl chain adopts a staggered conformation, the Mo-C(1)-C(2)-C(3)-C(4) unit is nearly coplanar, and the alkyl chain eclipses the trans-carbonyl group on Mo. NMR evidence indicates that this conformation is preserved in solution.  相似文献   

13.
Photolysis of W(CO)6 in the presence of Ph3SiH in n-heptane leads to the formation of the first tricarbonyl(η6-triphenylhydrosilane)tungsten complex W(CO)36-PhSiHPh2) (1) in good yield (ca. 70%). The molecular structure of the new tungsten-silane compound was established by single-crystal X-ray diffraction studies and characterized by IR, UV-Vis, 1H, 13C{1H}, and 29Si{1H} NMR spectroscopy.  相似文献   

14.
Treatment of the molybdenum tetracarbonyl complexes of [Mo(CO)4L2] (L2=pyridyl amine Schiff base ligands) with allyl chloride in refluxing THF afforded η3-allyl complexes [MoCl(CO)2L23-allyl)] (1-9). These complexes have been characterised by various techniques including 1H-NMR, IR and FABMS spectroscopies and the single crystal X-ray structure determinations of the complexes [MoCl(CO)2{N(C6H4-2-OMe)C(Me)C5H4N}(η3-C3H5)] (3) and [MoCl(CO)2{N(Me)C(Ph)C5H4N}(η3-C3H5)] (4).  相似文献   

15.
The cis and trans monosubstituted cyclopentadienyl tungsten and molybdenum complexes (η5-C5H4R)M(CO)2(L)I (1) (M=W, R=Me, tBu, L=P(OiPr)3, PPh3; M=Mo, R=Me, L=PPh3) have been synthesised and fully characterised by elemental analysis and IR and NMR spectroscopy. It was found that 1 underwent a thermal solid-state ligand isomerisation reaction and that the favoured direction of the isomerisation reaction is related to the melting points of the cis and trans isomers, i.e., with intermolecular forces in the solid state. No obvious relationship between the melting point and the metal, the ring-substituent or the ligand was observed. Crystal structure determinations of the cis and trans isomers of (η5-C5H4Me)W(CO)2(PPh3)I reveal that a limited amount of isomer conversion can be accommodated in the unit cell of the trans isomer, prior to crystal fragmentation. The rearrangement of the molecules within the unit cell, during isomerisation, also leads to disorder in the crystal.  相似文献   

16.
The complex Ru44-S)(μ,η3-C3H5)2(CO)12 is prepared and examined by IR and NMR spectroscopy; its crystal structure is determined (an automatic Bruker-Nonius X8 Apex four-circle diffractometer equipped with a 2-D CCD-detector, 100 K, graphite-monochromated molybdenum source, λ = 0.71073 ?). The crystal belongs to the orthorhombic crystal system with unit cell parameters a = 19.3781(9) ?, b = 12.2898(7) ?, c = 10.1726(4) ?, V = 2422.6(2) ?3, space group Pnma, Z = 4, composition C18H10O12Ru4S, d x = 2.343 g/cm3. The molecule of point symmetry C 1 is situated on the mirror plane of the space group Pnma, two carbonyl groups at Ru2 and Ru3 atoms overlapping with the allylic ligand with a weight of 50% so that carbon atoms coincide. Thus, we have a racemic structure with two overlapping enantiomers of the molecule of Ru44-S)(μ,η3-C3H5)2(CO)12. Original Russian Text Copyright ? 2008 by I. Yu. Prikhod’ko, V. P. Kirin, V. A. Maksakov, A. V. Virovets, and A. V. Golovin __________ Translated from Zhurnal Strukturnoi Khimii, Vol. 49, No. 4, pp. 748–752, May–June, 2008.  相似文献   

17.
Protonation of the cycloheptatriene complex [W(CO)36-C7H8)] with H[BF4] · Et2O in CH2Cl2 affords the cycloheptadienyl system [W(CO)35-C7H9)][BF4] (1). Complex 1 reacts with NaI to yield [WI(CO)35-C7H9)], which is a precursor to [W(CO)2(NCMe)33-C7H9)][BF4], albeit in very low yield. The dicarbonyl derivatives [W(CO)2L25-C7H9)]+ (L2=2PPh3, 4, or dppm, 5) were obtained, respectively, by H[BF4] · Et2O protonation of [W(CO)2(PPh3)(η6-C7H8)] in the presence of PPh3 and reaction of 1 with dppm. The X-ray crystal structure of 4 (as a 1/2 CH2Cl2 solvate) reveals that the two PPh3 ligands are mutually trans and are located beneath the central dienyl carbon and the centre of the edge bridge. The first examples of cyclooctadienyl tungsten complexes [WBr(CO)2(NCMe)2(1-3-η:5,6-C8H11)] (6) and [WBr(CO)2(NCMe)2(1-3-η:4,5-C8H11)] (7) were synthesised by reaction of [W(CO)3(NCR)3] (R=Me or Prn) with 3-Br-1,5-cod/6-Br-1,4-cod or 5-Br-1,3-cod/3-Br-1,4-cod (cod=cyclooctadiene), respectively. Complexes 6 and 7 are precursors to the pentahapto-bonded cyclooctadienyl tungsten species [W(CO)2(dppm)(1-3:5,6-η-C8H11)][BF4] and [W(CO)2(dppe)(1-5-η-C8H11)][BF4] · CH2Cl2.  相似文献   

18.
The reactivity of [Ru3Mo(μ42-CC)(μ-CO)3(CO)2(η-C5H4R)3(η-C5H5)] (R = H; Me) have been investigated, initially to elucidate the nature of the starting material, and, latterly, to define the reactivity of an interesting ethane-1,2-bis(ylidyne) species. While the mixed RuMo clusters were unreactive towards simple electrophiles and carbonyl substitution by phosphine ligands they did react with atmospheric oxygen or carbon monoxide to give substantially different products. In all instances oxygen was incorporated either at the metal centre or at the C2 fragment. High-pressure carbonylations yielded [Ru3(μ-CO)3(η-C5H5)33-C-C(O)O{Ru(CO)2(η-C5H5)})] and [{Ru2(μ-CO)(CO)2(η-C5H4Me)2}(μ42-CC){Ru(CO)(η-C5H4Me)Mo(η-C5H5)(=O)(μ-O)}], an ethane-1,2-bis(ylidene) complex, this exemplifying a relatively rare raft geometry which further reacted with Cl2CCCl2 to give [Mo34-C2(Ru(CO)2(η-C5H4Me))(CO)(μ-CO)(η-C5H5)3(Cl)2] having a similar geometry and undergone halogenation. In order to extend the extant examples of these raft clusters we explored the reaction of [{Ru(CO)2(η-C5H4R)2}2(μ-C2)] with [{Ru(CO)2(η-C5H5)2}2] to provide a rational synthetic pathway leading to very reactive [Ru(μ42-CC)(μ2-CO)2(CO)4(η-C5H4Me)2(η-C5H4R)2] rafts.  相似文献   

19.
合成了新型配合物{(n-Bu)2Sn[(η5-C5H5)Fe(η5-C5H4)COO]2}2,用元素分析、红外光谱和核磁共振谱( 1H、13C、119Sn)进行了表征,并用X-射线单晶衍射分析法测定其晶体结构。晶体属单斜晶系,空间群P21/c,晶胞参数a=11.753(4)?,b=21.133(7)?,c=23.374(9)?,β=101.62(3)°,V=5687(4)?3Z=4,Dc=1.614Mg·m-3,μ(MoKα)=1.912mm-1F(000)=2800,最终可靠因子R1=0.0827,wR2=0.2085。配合物分子呈中心对称,是具有Sn2O2中心内环的二聚体结构;每个锡原子与5个O原子和2个C原子形成扭曲的五角双锥几何构型,其中5个O原子为赤道配位原子,而C-Sn-C为配合物的轴。  相似文献   

20.
The pyrolysis reaction of [Ru3(CO)10(dppe)], compound 1, in toluene yields as the main product [Ru4(CO)9(μ-CO){μ42-PCH2CH2P(C6H5)2}(μ44-C6H4)], compound 2. The X-ray structure of 2 shows a benzyne group coordinated to a square of ruthenium atoms and a μ42-PCH2CH2PPh2 fragment. Variable-temperature NMR experiments showed three independent dynamic processes: a rotation of the benzyne group, CO migration and a twisting movement of the CH2CH2 fragment. The thermolysis of [Ru3(CO)10(dfppe)], compound 3, (dfppe=1,2-bis(dipentafluorophenylphosphino)ethane, carried out under the same conditions, showed 3 to be stable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号