首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 398 毫秒
1.
The cyclopentadienylchromium carbonyl thiocarbonyls Cp2Cr2(CS)2(CO)n (n = 4, 3, 2, 1) have been studied by density functional theory using the B3LYP and BP86 functionals. The lowest energy Cp2Cr2(CS)2(CO)4 structure can be derived from the experimentally characterized unbridged Cp2Cr2(CO)6 structure by replacing the two terminal carbonyl groups furthest from the Cr-Cr bond with two terminal CS groups. The two lowest energy Cp2Cr2(CS)2(CO)3 structures have a single four-electron donor η2-μ-CS group and a formal Cr-Cr single bond of length ∼3.1 Å. In contrast to the carbonyl analogue Cp2Cr2(CO)5 these Cp2Cr2(CS)2(CO)3 structures are viable with respect to disproportionation into Cp2Cr2(CS)2(CO)4 and Cp2Cr2(CS)2(CO)2 and thus are promising synthetic targets. The lowest energy Cp2Cr2(CS)2(CO)2 structures have all two-electron donor CO and CS groups and short CrCr distances around ∼2.3 Å suggesting the formal triple bonds required to give the chromium atoms the favored 18-electron configurations. These Cp2Cr2(CS)2(CO)2 structures are closely related to the known structure for Cp2Cr2(CO)4. In addition, several doubly bridged structures with four-electron donor η2-μ-CS bridges are found for Cp2Cr2(CS)2(CO)2 at higher energies. The global minimum Cp2Cr2(CS)2(CO) structure is a triply bridged triplet with a CrCr triple bond (2.299 Å by BP86). A higher energy singlet Cp2Cr2(CS)2(CO) structure has a shorter Cr-Cr distance of 2.197 Å (BP86) suggesting the formal quadruple bond required to give each chromium atom the favored 18-electron configuration.  相似文献   

2.
With copper(I) iodide as catalyst, σ-alkynyls, compounds (η5-C5H5)Cr(NO)2(CC-C6H5) (5), [(η5-C5H4)-COOCH3]Cr(NO)2(CC-C6H5) (10), and [(η5-C5H4)-COOCH3]W(CO)3(CC-C6H5) (13), were prepared from their corresponding metal chloride 1, 6 and 12. Structures of compound 3, 5 and 12 have been solved by X-ray diffraction studies. In the case of 5, there is an internal mirror plane passing through the phenylethynyl ligand and bisecting the Cp ring. The phenyl group is oriented perpendicularly to the Cp with an eclipsed conformation. The twist angle is 0° and 118.4° for -CC-Ph and two NO ligands, respectively. The orientation is rationalized in terms of orbital overlap between ψ3 of Cp, dπ of Cr atom, and π of alkynyl ligand, and complemented by molecular orbital calculation. The opposite correlation was observed on the chemical shift assignments of C(2)-C(5) on Cp ring in compounds 6 and 12, using HetCOR NMR spectroscopy. The electron density distribution in the cyclopentadienyl ring is discussed on the basis of 13C NMR data and compared with the calculations via density functional B3LYP correlation-exchange method.  相似文献   

3.
[(η5-C5H5)ZrCl3] reacts with [C5H4CH2CH2NMe2]Li yielding the coordination polymer [(C5H5)(C5H4CH2CH2NMe2)ZrCl2]n (1) as a brown solid which is very sensitive to moisture. The reaction of 1 with 1.35 equivalent of HCl (methanolic solution) yields pale yellow green crystals of [(η5-C5H5)(η5-C5H4CH2CH2NHMe2)ZrCl2]2[ZrCl6] (2). Compound 2 was fully characterized on the basis of NMR data and X-ray crystal structure analysis. The formation of this product indicates the elimination of C5H4CH2CH2NMe2 as well as C5H5 ligands from the Zr(IV) metal centre.  相似文献   

4.
The monoxides [Fe(η5-C5Me4PPh2)(η5-C5Me4P{O}Ph2)] (1) and [Os(η5-C5H4PPh2)(η5-C5H4P{O}Ph2)] (2) have been prepared by treatment of the corresponding diphosphines with CCl4 and methanol.These ligands react with [Pd(PhCN)2Cl2] to give dichloride complexes of different structure.The dimeric complex [{Os(η5-C5H4PPh2)(η5-C5H4P{O}Ph2)}PdCl(μ-Cl)]2 (4) contains the monodentate P-coordinated osmocene ligand with the free P{O}Ph2 group, while the octamethylferrocene ligand gives the chelate k2-P,O complex [{Fe(η5-C5Me4PPh2)(η5-C5Me4P{O}Ph2)}PdCl2] (3).The structures of 3 and 4 have been determined crystallographically.Treatment of 3 and 4 with silver salts in CH2Cl2 or acetonitrile leads to the corresponding dicationic complexes[{M(η5-C5R4PPh2)(η5-C5R4P{O}Ph2)}Pd(MeCN)x]2+ (5, M = Fe, R = Me; 6, M = Os, R = H). Complex 5 decomposes upon isolation, in contrast 6 is rather stable, probably due to Os-Pd bonding. The dichlorides 3 and 4 catalyze catalytic amination of p-bromotoluene with N-(4-tolyl)morpholine with lower activity than (dppf)PdCl2, however they perform comparable to (dppf)PdCl2 activity in coupling of p-bromotoluene with p-methoxyphenyl boronic acid.  相似文献   

5.
Reaction of the neutral tricarbaborane nido-7,8,9-C3B8H12 (1) with triethylamine in CH2Cl2 led to quantitative deprotonation and isolation of the corresponding Et3NH+ salt of the [nido-7,8,9-C3B8H11] anion (2). This was converted into PSH+ and Me4N+ salts via metathetic cation exchange. Heating of the solid Me4N+[7,8,9-C3B8H11] in mineral oil at 350 °C for 2 h resulted in thermal rearrangement and isolation of the cage isomeric compound Me4N+[7,8,10-C3B8H11]. Finally, compound 1 was directly complexed via reaction with [CpFe(CO)2]2 (Cp = η5-C5H5) to generate the ferratricarbollide sandwich [1-Cp-closo-1,2,4,10-FeC3B8H11] (4) in 60% yield. The structures of all the generic compounds of tricarbollide chemistry, 1 (PSH+ salt), 2 (MePPh3+salt), and 4, were established unambiguously by an X-ray diffraction analysis.  相似文献   

6.
The new ferrocenylmethylphosphines PH(CH2Fc)2 (1) [Fc = Fe(η5-C5H5)(η5-C5H4)] and P(CH2Fc)3 (2) and the phosphonium salt [P(CH2Fc)3(CH2OH)]I (3) were synthesised from P(CH2OH)3 and [FcCH2NMe3]I. [P(CH2Fc)(CH2OH)3]Cl (4) was obtained from P(CH2Fc)(CH2OH)2, CH2O and HCl. The new phosphines and phosphonium salts were fully characterised by NMR and IR spectroscopy and MS. [Mo(CO)6] reacts with 1 to give [Mo(CO)5{PH(CH2Fc)2}] (5) in high yield, but attempts to employ 2 as a ligand failed. The reaction of [P(CH2Fc)3(CH2OH)]I (3) and [PH(CH2Fc)3]I (obtained in situ from 3 and Na2S2O5) with [WI2(CO)3(NCMe)2] gave the complex salts [P(CH2Fc)3(CH2OH)][WI3(CO)4] (6) and [PH(CH2Fc)3][WI3(CO)4] (7), respectively. [P(CH2Fc)4]I (8) was synthesized from PH2CH2Fc and [FcCH2NMe3]I. Crystal structures were obtained for 1, 3-8.  相似文献   

7.
The half-sandwich complex [Ti{(η5-C5H4)B(NiPr2)N(H)iPr}(NMe2)3] (6) was prepared from (η1-C5H5)B(NiPr2)N(H)iPr (5) and [Ti(NMe2)4] with cleavage of one equivalent of HNMe2 and further converted into the corresponding constrained geometry complex [Ti{(η5-C5H4)B(NiPr2)NiPr}(NMe2)2] (7) by elimination of a second equivalent of HNMe2. Reaction of the half-sandwich complexes [Ti{(η5-C5H4)B(NiPr2)N(H)R}(NMe2)3] (R = iPr, tBu) with excess Me3SiCl yielded the corresponding dichloro complexes [Ti{(η5-C5H4)B(NiPr2)N(H)R}Cl2(NMe2)] (R = tBu (10), iPr (11)). The intermediate species [Ti{(η5-C5H4)B(NiPr2)N(H)iPr}Cl(NMe2)2] (9) could also be spectroscopically characterised. Partial hydrolysis of 10 and 11, respectively, resulted in formation of [{TiCl2(μ-{OB(NHMe2)-η5-C5H4})}2-μ-O] (12). The molecular structures of 10 and 12 have been determined by X-ray crystallographic analyses. Complex 10, when activated with MAO, was found to be a highly active styrene polymerisation catalyst while being inactive towards the polymerisation of ethylene.  相似文献   

8.
9.
The synthesis and characterization of pyrazole derivatives of general formula [C6H4-4-R-1-{(3,5-Me2-C3N2)-CH2-(η5-C5H4)Fe(η5-C5H5)}] [R = OMe (1a) or H (1b)] with a ferrocenylmethyl substituent are described.The study of the reactivity of compounds 1 with palladium(II) acetate has allowed the isolation of complexes (μ-AcO)2[Pd{κ2-C,N-C6H3-4-R-1-[(3,5-Me2-C3N2)-CH2-(η5-C5H4)Fe(η5-C5H5)]}]2 (2) [R = OMe (2a) or H (2b)] that contain a bidentate [C(sp2, phenyl), N] ligand and a central “Pd(μ-AcO)2Pd” unit.Furthermore, treatment of 2 with LiCl produced complexes (μ-Cl)2[Pd{κ2-C,N-C6H3-4-R-1-[(3,5-Me2-C3N2)-CH2-(η5-C5H4)Fe(η5-C5H5)]}]2 (3) [R = OMe (3a) or H (3b)] that arise from the replacement of the acetato ligands by the Cl.Compounds 2 and 3 also react with PPh3 giving the monomeric complexes [Pd{κ2-C,N-C6H3-4-R-1-[(3,5-Me2-C3N2)-CH2-(η5-C5H4)Fe(η5-C5H5)]}X(PPh3)] {X = AcO and R = OMe (5a) or H (5b) or X = Cl and R = OMe (6a) or H (6b)}, where the phosphine is in a cis-arrangement to the metallated carbon atom. Treatment of 3 with thallium(I) acetylacetonate produced [Pd{κ2-C,N-C6H3-4-R-1-[(3,5-Me2-C3N2)-CH2-(η5-C5H4)Fe(η5-C5H5)]}(acac)] (7) [R = OMe (7a) or H (7b)]. Electrochemical studies of the free ligands and the cyclopalladated complexes are also reported. The dimeric complexes 3 also react with MeO2C-CC-CO2Me (in a 1:4 molar ratio) giving [Pd{(MeO2C-CC-CO2Me)2C6H3-4-R-1-[(3,5-Me2-C3N2)-CH2-(η5-C5H4)Fe(η5-C5H5)]}Cl] (8) [R = OMe (8a) or H (8b)], which arise from the bis(insertion) of the alkyne into the σ{Pd-C(sp2, phenyl)} bond of 3.  相似文献   

10.
Friedel-Crafts cycloalkylation of fluorene with 1,4-dichlorobutane has been studied in different conditions. This reaction allows to obtain the product of exhausting fluorene alkylation, hexadecahydrotetrabenzo[a,c,d,f]fluorene - perspective η5 ligand. The simplest zirconocene has been synthesized and its structure has been confirmed by X-ray diffraction analysis. The molecule of this compound possesses skewed conformation of metallocene fragment with the phenylene moiety of fluorenyl ligand oriented towards the front side of metallocene wedge.  相似文献   

11.
A novel compound of {[(C6H5)NH]2C=NH(C6H5)}[B(C6H5)4]·C2H5OH is prepared and examined by single crystal X-ray diffraction. Crystal data: C45H44BN3O, M = 653.64, monoclinic, space group P21/c, unit cell parameters: a = 24.375(2) Å, b = 17.5829(15) Å, c = 18.090(1) Å, β = 105.277(2)°, V = 7479.0(11) Å3, Z = 8, d calc = 1.161 g/cm3, T = 293 K, R 1 = 0.064. The structure contains two crystallographically independent cations, two anions, and two solvate ethanol molecules. Three types of interactions occur between them: interionic N-H(N)⋯π and N(H)⋯π⋯H(C), π-delocalized system of Ph rings of the anions, and interaction of ions with ethanol molecules N-H⋯O-H(O)⋯π. The compound is characterized by IR and luminescence spectra. At room temperature, the emission intensity grows with time of exposure to UV irradiation. Original Russian Text Copyright ? 2008 by T. M. Polyanskaya, E. A. Il’inchik, V. V. Volkov, M. K. Drozdova, O. P. Yur’eva, and G. V. Romanenko __________ Translated from Zhurnal Strukturnoi Khimii, Vol. 49, No. 3, pp. 512–521, May–June, 2008.  相似文献   

12.
A number of organometallic stilbenes of the general type [Co(η4-C4Ph4)(η5-C5H4CHCHR] are reported where R is C6H4X-4 (X = H, OMe, Br, NO2), 1-naphthyl, 9-anthryl, 1-pyrenyl, (η5-C5H4)Co(η4-C4Ph4), and (η5-C5H4)Fe(η5-C5H4Y) {Y = CHO, CHC(CN)2 and CHCHC5H45)Co(η4-C4Ph4)}. They were prepared by Wittig or Horner-Wadsworth-Emmons reactions which yield both E and Z or only E products respectively. The isomers were separated and all compounds characterised by standard spectroscopic techniques as well as by X-ray diffraction methods in many cases. The electrochemistry of the stilbene analogues in dichloromethane solution is also reported. In most, the (η5-C5H4)Co(η4-C4Ph4) functional group undergoes a reversible one-electron oxidation. For those molecules that also include (η5-C5H4)Fe(η5-C5H4Y), this is preceded by the reversible oxidation of the ferrocenyl group. Spectroscopic and structural data suggests that for most compounds there is little electronic interaction between Co(η4-C4Ph4)(η5-C5H4) and the R end groups which are effectively independent of one another. The only exceptions to this are Z and E-[Co(η4-C4Ph4)(η5-C5H4CHCHC6H4NO2-4], and [Co(η4-C4Ph4)(η5-C5H4CHCHC5H45)Fe{η5-C5H4CHC(CN)2}] where the electronic spectra are respectively consistent with a significant Co(η4-C4Ph4)(η5-C5H4)/NO2 donor/acceptor interaction and a less significant Co(η4-C4Ph4)(η5-C5H4)/C(CN)2 one. However, OTTLE studies show that in the electronic spectra of [Co(η4-C4Ph4)(η5-C5H4CHCHR]+ there are low energy absorption bands (950-1800 nm) which are attributed to R → Co(η4-C4Ph4)(η5-C5H4)+ or, when R is a ferrocenyl-base group, Co(η4-C4Ph4)(η5-C5H4) → (η5-C5H4)Fe(η5-C5H4Y)+ charge transfer transitions. The ferrocenyl compounds undergo cis/trans isomerisation on the OTTLE experiment timescale.  相似文献   

13.
The pressure dependences (dν/dP) of the main IR and Raman bands of Zeise’s complexes, K[Pt(η2-C2H4)Cl3] and [Pt(η2-C2H4)Cl2]2, have been determined for the first time for selected pressures up to ∼33 kbar with the aid of diamond-anvil cells. Neither complex undergoes a pressure-induced structural change throughout the pressure range investigated. The dν/dP values range from −0.13 to 0.79 cm−1 kbar−1. The negative values have proved particularly informative in identifying the location of the CC stretching modes of the Pt-ethylene groups, a topic of considerable disagreement in the literature.  相似文献   

14.
Visible light irradiation of the benzene complex [(η-1-ButNH-1,7,9-C3B8H10)Fe(η-C6H6)]+ in the presence of the charge-compensated carborane anions [9-L-7,8-C2B9H10] (L = SMe2, NMe3) affords ferracarboranes (η-1-ButNH-1,7,9-C3B8H10)Fe(η-9-L-7,8-C2B9H10). Their structures were established by X-ray diffraction analysis.  相似文献   

15.
Treatment of [W(CO)5THF] with diferrocenyl diselenide, Fc2Se2, yielded the novel metal-metal bonded tungsten(I) complex, [W2(μ-SeFc)2(CO)8] (1: Fc = ferrocenyl, [Fe(η5-C5H5)(η5-C5H4)]), which was characterised by NMR and IR spectroscopy, mass spectrometry, and X-ray crystallography. The corresponding tellurium derivative could not be prepared by an analogous route. The X-ray crystal structure of Fc2Te2 has also been determined.  相似文献   

16.
The hitherto unknown indenyl-derived ylide, methyldiphenylphosphonium 1-indenylide, 1-C9H6PMePh2 (1) and its chromium(0) complex, Cr(η5-1-C9H6PMePh2)(CO)3 (2) have been synthesized and characterized spectroscopically and crystallographically. The structures and properties of 1 and 2 are compared with those of the analogous C5H4PMePh2 and its chromium complex, Cr(η5-C5H4PMePh2)(CO)3. Compound 2, obtained as a racemic mixture, exhibits planar chirality resulting from coordination of the prochiral aromatic ligand.  相似文献   

17.
用Xα方法计算了Ni(C5H5)2的电子能级与归一化电荷,讨论了夹心化合物成键的特点,并用过渡态方法分析Ni(C5H5)2的光电子能谱及紫外可见吸收光谱,结果与实验相符。  相似文献   

18.
The aldol condensation reaction between [Co(η4-C4Ph4){η5-C5H4C(O)CH3}] and a range of aromatic aldehydes [RCHO] and [RCHCH-CHO] gives a series of α,β-unsaturated ketones [Co(η4-C4Ph4){η5-C5H4C(O)CHCH-R}] and [Co(η4-C4Ph4){η5-C5H4C(O)CHCH-CHCH-R}] (3). The reaction is promoted by various bases: NaH proved to be the most effective whilst nBuLi gave [Co(η4-C4Ph4){η5-C5H4C(OH)(nBu)CH3}] as the major product. NaOH was ineffective, perhaps indicating that that the methyl protons in [Co(η4-C4Ph4){η5-C5H4C(O)CH3}] are less acidic than those in [Fe(η5-C5H5){η5-C5H4C(O)CH3}]. Compounds 3 were characterised spectroscopically. Their 1H NMR spectra are consistent with a trans configuration about their CC bond, and this was confirmed by X-ray crystallography in five cases, which showed that all have the same basic structure with parallel cyclobutadiene and cyclopentadienyl ligands, but they are not identical. The C5H4C(O)(CHCH)n-R (n = 1 or 2) moieties show little evidence for delocalisation and often deviate from planarity. The UV/Vis spectra of those 3 with smaller aromatic rings (R = C6H5, 4-C6H4NMe2, 2-C4H3S and 1-C10H7) suggest that these are donor-π-acceptor systems, but as the annellation of R increases (R = 9-C14H9, 1-C16H9 and 1-C20H11) the spectra increasingly resemble those of the parent polycyclic aromatic hydrocarbon, RH. Reduction of [Co(η4-C4Ph4){η5-C5H4C(O)CHCH-C10H7-1}] with DIBAL gives a mixture of [Co(η4-C4Ph4){η5-C5H4C(O)CH2CH2-C10H7-1}] and [Co(η4-C4Ph4){η5-C5H4CH(OH)CHCH-C10H7-1}]. A minor product from the preparation of [Co(η4-C4Ph4){η5-C5H4C(O)CH3}] was shown by X-ray crystallography to be the η4-butadiene complex [Co{η4-Ph(H)CC(Ph)-C(Ph)C(H)Ph}{η5-C5H4C(O)CH3}].  相似文献   

19.
The structures of the metallacarborane cations [(-9-Me2S-7,8-C2B9H10)Ni(-Cp)Ni(-9-Me2S-7,8-C2B9H10)]+ (2) and [Cp*Ru(Me2S-C2B9H10)RuCp*]+ (4b) were established by X-ray diffraction analysis. These results confirmed the triple-decker structure proposed for complex 2 earlier, whereas complex 4b proved to be 13-vertex dimetallacarborane rather than the triple-decker complex, as has been suggested earlier.Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 9, pp. 1879–1883, September, 2004.  相似文献   

20.
The dialkyl complexes, (R = Pri, R′ = Me (2a), CH2Ph (3a); R = Bun, R′ = Me (2b), CH2Ph (3b); R = But, R′ = Me (2c), CH2Ph (3c); R = Ph, R′ = Me (2d), CH2Ph (3d)), have been synthesized by the reaction of the ansa-metallocene dichloride complex, [Zr{R(H)C(η5-C5Me4)(η5-C5H4)}Cl2] (R = Pri (1a), Bun (1b), But (1c), Ph (1d)), and two molar equivalents of the alkyl Gringard reagent. The insertion reaction of the isocyanide reagent, CNC6H3Me2-2,6, into the zirconium-carbon σ-bond of 2 gave the corresponding η2-iminoacyl derivatives, [Zr{R(H)C(η5-C5Me4)(η5-C5H4)}{η2-MeCNC6H3Me2-2,6}Me] (R = Pri (4a), Bun (4b), But (4c), Ph (4d)). The molecular structures of 1b, 1c and 3b have been determined by single-crystal X-ray diffraction studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号