首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The half-sandwich complex [Ti{(η5-C5H4)B(NiPr2)N(H)iPr}(NMe2)3] (6) was prepared from (η1-C5H5)B(NiPr2)N(H)iPr (5) and [Ti(NMe2)4] with cleavage of one equivalent of HNMe2 and further converted into the corresponding constrained geometry complex [Ti{(η5-C5H4)B(NiPr2)NiPr}(NMe2)2] (7) by elimination of a second equivalent of HNMe2. Reaction of the half-sandwich complexes [Ti{(η5-C5H4)B(NiPr2)N(H)R}(NMe2)3] (R = iPr, tBu) with excess Me3SiCl yielded the corresponding dichloro complexes [Ti{(η5-C5H4)B(NiPr2)N(H)R}Cl2(NMe2)] (R = tBu (10), iPr (11)). The intermediate species [Ti{(η5-C5H4)B(NiPr2)N(H)iPr}Cl(NMe2)2] (9) could also be spectroscopically characterised. Partial hydrolysis of 10 and 11, respectively, resulted in formation of [{TiCl2(μ-{OB(NHMe2)-η5-C5H4})}2-μ-O] (12). The molecular structures of 10 and 12 have been determined by X-ray crystallographic analyses. Complex 10, when activated with MAO, was found to be a highly active styrene polymerisation catalyst while being inactive towards the polymerisation of ethylene.  相似文献   

2.
Reaction of the potassium salt of N-(diisopropoxyphosphoryl)-p-bromothiobenzamide p-BrC6H4C(S)NHP(O)(OiPr)2 (HL) with Cd(II) cations in freshly dried and distilled EtOH leads exclusively to the complex [Cd(p-BrC6H4C(S)NH2-S)(L-O,S)2] ([Cd(LI)L2]), while the same reaction in H2O leads to the complex [Cd(HL-O)2(L-O,S)2] ([Cd(HL)2L2]). The corresponding reactions with Zn(II) always lead to the complex [Zn(L-O,S)2] ([ZnL2]) regardless of the solvent. The crystal structure of [Cd(HL)2L2].2/3H2O reveals to be a polymorph to the previously reported anhydrous [Cd(HL)2L2].  相似文献   

3.
Treatment of [LOEtTi(OTf)3] (, OTf = triflate) with S-binapO2 (binap = 2,2′-bis(diphenylphosphinoyl)-1,1′-binaphthyl) afforded the terminal hydroxo complex [LOEtTi(S-binapO2)(OH)][OTf]2 (1). Treatment of [LOEtTi(OTf)3] with K(tpip) (tpip = [N(Ph2PO)2]) afforded [LOEtTi(tpip)(OTf)][OTf] (2) that reacted with CsOH to give [LOEtTi(tpip)(OH)][OTf] (3). The structures of 1 and 2 have been determined.  相似文献   

4.
Mononuclear complexes of the type, M(CO)4[Se2P(OR)2] (M = Mn, R = iPr, 1a; Et, 1b; M = Re, R = iPr, 3a; Et, 3b) can be prepared from either [-Se(Se)P(OiPr)2]2 (A) or [Se{-Se(Se)P(OEt)2}2] (B) with M(CO)5Br. O,O′-dialkyl diselenophosphate ([(RO)2PSe2]-, abbreviated as dsep) ligands generated from A and B act as a chelating ligand in these complexes. Upon refluxing in acetonitrile, these mononuclear complexes yield dinuclear complexes with a general formula of [M2(CO)6{Se2P(OR)2}2] (M = Mn, R = iPr, 2a; Et, 2b; M = Re, R = iPr, 4a; Et, 4b). Dsep ligands display a triconnective, bimetallic bonding mode in the dinuclear compounds and this kind of connective pattern has never been identified in any phosphor-1,1-diselenoato metal complexes. Compounds 2b, 3b, and 4 are structurally characterized. Compounds 2b and 3b display weak, secondary Se?Se interactions in their lattices.  相似文献   

5.
A variety of monocyclopentadienyl alkoxo titanium dichloride and bisalkoxo titanium dichloride complexes have been prepared and characterized by spectroscopic techniques. The titanium derivatives containing both cyclopentadienyl and various alkoxo ligands [Ti(η5-C5H5)(OR)Cl2] (1-5) have been synthesized from the reaction of [Ti(η5-C5H5)Cl3] with 1 equivalent of the corresponding alcohol in THF in the presence of triethylamine (ROH = Adamantanol, 1R,2S,5R-(−)-menthol, 1S-endo-(−)-borneol, cis-1,3-(−)-benzylideneglycerol, 1,2:3,4-di-O-isopropylidene-α-d-galactopyranose). The bisalkoxo titanium dichloride derivatives [TiCl2(OR)2] (6-10) have been prepared by a redistribution reaction between Ti(OR)4 and TiCl4 compounds 6-8 (OR = Adamantanoxy, (1R,2S,5R)-(−)menthoxy, (1S-endo)-(−)-borneoxy) and by reaction of [Ti(OR)2(OPri)2]2 with CH3COCl compounds 9 and 10 (OR = 1,2:3,4-di-O-isopropylidene-α-d-galactopyranoxy, and 1,2:5,6-di-O-isopropylidene-α-d-glucofuranoxy). The molecular structures of 2 and 3 have been determined by single crystal X-ray diffraction studies.  相似文献   

6.
Amination of 1-bromo-2-methylpyridine with trans-1,2-diaminocyclohexane gives the corresponding bis(aminopyridine) H2L1. Conversion of the same diamine to the N,N′-bis(amino-4,4-dimethylthiazoline) H2L2 is also completed in three steps. The analogous aminooxazoline is however inaccessible, although the aminocyclohexane analogue is prepared readily. The proligand H2L1 forms bis(aminopyridinato) alkyl complexes of the type [ZrL1R2] (R = CH2Ph, CH2But). The molecular structure of the neopentyl complex shows that the chiral backbone leads to a puckering of the N4Zr coordination sphere, which contrasts with the related cyclohexyl-bridged Schiff-base complexes which are essentially planar. [ZrL2(CH2But)2] - the first aminothiazolinato complex - is formed similarly. A comparison of the structures of [ZrL1(CH2But)2] and [ZrL2(CH2But)2] indicates that the latter has a fully delocalised N-C-N system, rather similar to a bis(amidinate). Reaction of H2L2 with [Ti(NMe2)4] gives [TiL2(NMe2)2] which appears to be C2-symmetric like the above complexes according to NMR spectra, but has one uncoordinated thiazoline unit in the solid state. This is a result of increased ring strain at the smaller titanium metal centre.  相似文献   

7.
The effect of the length of alkane spacer in diphosphines on the nuclearity of Ag(I) complexes containing dialkyl dithiophosphates (dtp) ligands has been investigated. 1,1-Bis(diphenylphosphino)methane (dppm) yielded tetranuclear [Ag4(dppm)2{S2P(OEt)2}4] (1), [Ag4(dppm)2{S2P(OiPr)2}4] (3), trinuclear [Ag3(dppm)3{S2P(OEt)2}2](PF6) (2), and a dinuclear [Ag2(dppm)2{S2P(OiPr)}](PF6) (4). The increase in spacer length from one methylene in dppm to two in 1,2-bis(diphenylphosphino)ethane (dppe) resulted in the formation of polymeric, [Ag(dppe){S2P(OR)2}] (R = Et, 5a and 5a′; iPr, 5b), and [Ag43-Cl)(dppe)1.5{S2P(OR)2}3] (R = Et, 6a; iPr, 6b). Compounds 5a, 5b, 6a and 6b were reported earlier [C.W. Liu, B.-J. Liaw, L.-S. Liou, J.-C. Wang, Chem. Commun. (2005) 1983]. Further increase in the chain length to four methylene units in 1,4-bis(diphenylphosphino)butane (dppb) yielded dppb-bridged polymers, [Ag(dppb){S2P(OEt)2}] (7) and [Ag2(dppb){S2P(OEt)2}2] (8). In all the polynuclear compounds, diphosphines acted as P,P′-bridging ligands, while the dtp ligands (S,S′-donors) adopted varieties of coordination patterns: S,S′-chelating (5, 7), S,S′-bridging (4), bimetallic-triconnective, μ221 (1, 3, 8), bimetallic-diconnective, μ22 (2, 3) and trimetallic-triconnective, μ321 (6). Some of the complexes exhibit argentophilicity with Ag?Ag distances in the range, 2.918-3.360 Å. Concomitant bridging of two silver atoms either by dppm and dtp ligands (1, 3 and 4) or two dtp ligands (8) lead to close silver-silver contacts. The diphosphines (dppe and dppb) with longer spacer appeared to favor 1D or 2D polymers due to the flexibility of the spacer within the diphosphine unit by adopting anti conformation as opposed to syn conformation of the dppm linker is revealed in complexes.  相似文献   

8.
A variety of bisalkoxo titanium dichloride THF adducts [Ti(OR)2Cl2(thf)2] {OR = adamantanoxo (9), (1R,2S,5R)-(−)-menthoxo (10), (1S-endo)-(−)-borneoxo (11)} have been prepared and characterized by spectroscopic techniques. The molecular structure of 11 has been determined by single-crystal X-ray diffraction studies. The parent Lewis acid bisalkoxo titanium dichloride derivatives and related alkoxo complexes [Ti(OR)2(OPri)2]2 have been tested as initiators in ring-opening polymerization of ε-caprolactone and l-lactide.  相似文献   

9.
A series of hetero-dinuclear CuII-ZnII complexes, [CuZnCl2L1] (1), [CuZnCl2L2] (2), [CuZnBr2L3] (3), [CuZnBr2L4(DMF)] (4), [CuZnCl2L4] (5), [CuZnCl2L5] (6), [CuZnCl2L3] (7) and [CuZnBr2L1] (8), where L1, L2, L3, L4 and L5 are the deprotonated forms of N,N′-bis(3-ethoxysalicylidene)-1,3-propanediamine (H2L1), N,N′-bis(2-hydroxynaphthylmethylidene)-1,3-propanediamine (H2L2), N,N′-bis(3-methoxysalicylidene)-1,3-propanediamine (H2L3), N,N′-bis(salicylidene)-1,3-propanediamine (H2L4) and N,N′-bis(salicylidene)-1,4-butanediamine (H2L5), respectively, have been synthesized and characterized by physico-chemical methods and single-crystal X-ray diffraction. The complexes were tested for their urease inhibitory activity. Complexes 1 and 8 show effective urease inhibitory activity with IC50 values of 2.2 and 10.7 μM. The molecular docking study of the complexes with the Helicobacter pylori urease was performed.  相似文献   

10.
Compound MoO2Cl2(THF)2 reacts with two equivalents of 1,3-dialkyl substituted 4,5-dimethylimidazol-2-ylidenes to give the dioxomolybdenum(VI) complexes MoO2Cl2(LR)2 [R = Me (1), i-Pr (2)]. Treatment of MoO2Cl2(THF)2 with one equivalent of the N-heterocyclic carbenes LMe, Li-Pr and C1Ln-Bu (LMe = 1,3,4,5-tetramethylimidazol-2-ylidene, Li-Pr = 1,3-diisopropyl-4,5-dimethylimidazol-2-ylidene, and C1Ln-Bu = 1,3-dibutyl-4,5-dichloroimidazol-2-ylidene) affords the monocarbene adducts MoO2Cl2(LR) [R = Me (3), i-Pr (4)] and MoO2Cl2(C1Ln-Bu) (5), respectively. Decomposition of complexes 1-5 affords a molybdenum oxychloride anion [Mo2O5Cl4]2− as an imidazolium salt.  相似文献   

11.
Chiral and racemic Salen-type Schiff-base ligands (H2L1, H2L2 and H2L3), condensed between D-(+)- and D,L-camphoric diamine (also known as (1R,3S)-1,2,2-trimethylcyclopentane-1,3-diamine) and 2-hydroxybenzaldehyde or 3,5-dibromo-2-hydroxybenzaldehyde with a 1:2 molar ratio, have been synthesized and characterized. A series of new nickel(II), palladium(II) and copper(II) complexes of these chiral and racemic ligands exhibiting different coordination number (4, 5 and 6) have been characterized with the formulae [NiL1]·CH3OH (3), [NiL1]·H2O (4), [NiL2] (5), [PdL2] (6), [Cu2(L2)2(H2O)] (7) and [NiL3(DMF)(H2O)] (8). Different solvent molecules in 3 and 4 (methanol and water molecules) as well as different apical ligands in 7 and 8 (water and DMF molecules) are involved in different O–H···O hydrogen bonding interactions to further stabilize the structures. UV–Vis (UV–Vis), circular dichroism (CD) spectra and thermogravimetric (TG) analyses for the metal complexes have also been carried out.  相似文献   

12.
13.
Two polar phosphinoferrocene ligands, 1′-(diphenylphosphino)ferrocene-1-carboxamide (1) and 1′-(diphenylphosphino)ferrocene-1-carbohydrazide (2), were synthesized in good yields from 1′-(diphenylphosphino)ferrocene-1-carboxylic acid (Hdpf) via the reactive benzotriazole derivative, 1-[1′-(diphenylphosphino)ferrocene-1-carbonyl]-1H-1,2,3-benzotriazole (3). Alternatively, the hydrazide was prepared by the conventional reaction of methyl 1′-(diphenylphosphino)ferrocene-1-carboxylate with hydrazine hydrate, and was further converted via standard condensation reactions to three phosphinoferrocene heterocycles, viz 2-[1′-(diphenylphosphino)ferrocen-1-yl]-1,3,4-oxadiazole (4), 1-[1′-(diphenylphosphino)ferrocen-1-carbonyl]-3,5-dimethyl-1,2-pyrazole (5), and 1-[1′-(diphenylphosphino)ferrocene-1-carboxamido]-3,5-dimethylpyrrole (6). Compounds 1 and 2 react with [PdCl2(cod)] (cod = η22-cycloocta-1,5-diene) to afford the respective bis-phosphine complexes trans-[PdCl2(L-κP)2] (7, L = 1; 8, L = 2). The dimeric precursor [(LNC)PdCl]2 (LNC = 2-[(dimethylamino-κN)methyl]phenyl-κC1) is cleaved with 1 to give the neutral phosphine complex [(LNC)PdCl(1P)] (9), which is readily transformed into a ionic bis-chelate complex [(LNC)PdCl(12O,P)][SbF6] (10) upon removal of the chloride ligand with Ag[SbF6]. Pyrazole 5 behaves similarly affording the related complexes [(LNC)PdCl(5P)] (12) and [(LNC)PdCl(52O,P)][SbF6] (13), in which the ferrocene ligand coordinates as a simple phosphine and an O,P-chelate respectively, while oxadiazole 4 affords the phosphine complex [(LNC)PdCl(4P)] (11) and a P,N-chelate [(LNC)PdCl(42N3,P)][SbF6] (14) under similar conditions. All compounds were characterized by elemental analysis and spectroscopic methods (multinuclear NMR, IR and MS). The solid-state structures of 1⋅½AcOEt, 2, 7⋅3CH3CN, 8⋅2CHCl3, 9⋅½CH2Cl2⋅0.375C6H14, 10, and 14 were determined by single-crystal X-ray crystallography.  相似文献   

14.
Reduction of isopropyldimethylsilyl-substituted titanocene dichloride [TiCl25-C5Me4SiMe2Pri)2] (1) by excess magnesium in the presence of excess bis(trimethylsilyl)ethyne (btmse) in tetrahydrofuran at 60 °C yielded a mixture of products amongst them only the trinuclear Ti-Mg-Ti hydrido-bridged complex Mg[Ti(μ-H)25-C5Me4SiMe2Pri)]2 (3) was isolated and characterized. The precursor of titanocene, [Ti(η5-C5Me4SiMe2Pri)22-btmse)] (6), was obtained from the identical system which, after initial formation of [TiCl(η5-C5Me4SiMe2Pri)2] (2), reacted at −18 °C overnight and then the solution was rapidly separated from the remaining magnesium. Titanocene [Ti(η5-C5Me4SiMe2Pri)2] (7) was obtained by thermolysis of 6 at 75 °C in vacuum. Crystal structures of 1, 2, 3, 6, and 7 were determined.  相似文献   

15.
Four half-sandwich ruthenium(II) complexes [(η6-C6H6)Ru(L1-O)][PF6] (1), [(η6-C6H6)Ru(L2-O)][PF6] (2), [(η6-C6H6)Ru(L3-O)][PF6] (3), [(η6-C6H6)Ru(L4-O)][PF6] (4a), and [(η6-C6H6)Ru(L4-O)][BPh4] (4b) [L1-OH, 4-nitro-6-{[(2′-(pyridin-2-yl)ethyl)methylamino]methyl}-phenol; L2-OH, 2,4-di-tert-butyl-6-{[(2′-(pyridin-2-yl)ethyl)methylamino]methyl}-phenol; L3-OH, 2,4-di-tert-butyl-6-{[2′-((pyridin-2-yl)benzylamino)methyl}-phenol; L4-OH, 2,4-di-tert-butyl-6-{[(2′-imethylaminoethyl)methylamino]methyl}-phenol (L4-OH)], supported by a systematically varied series of tridentate phenolate-based pyridylalkylamine and alkylamine ligands are reported. The molecular structures of 1-3, 4a, and 4b have been elucidated in solution using 1H NMR spectroscopy and of 1, 3, and 4b in the solid state by X-ray crystallography. Notably, due to coordination by the ligands the Ru center assumes a chiral center and in turn the central amine nitrogen also becomes chiral. The 1H NMR spectra exhibit only one set of signals, suggesting that the reaction is completely diastereoselective [1: SRu,SN/RRu,RN; 2: RRu,RN/SRu,SN; 3: SRu,RN/RRu,SN; 4b: SRu,RN/RRu,SN]. The crystal packing in 1 and 3 is stabilized by C-HO interactions, in 4b no meaningful secondary interactions are observed. From the standpoint of generating phenoxyl radical, as investigated by cyclic voltammetry (CV), complex 1 is redox-inactive in MeCN solution. However, 2, 3, and 4a generate a one-electron oxidized phenoxyl radical coordinated species [2]2+, [3]2+, and [4a]2+, respectively. The radical species are characterized by CV, UV-Vis, and EPR spectroscopy. The stability of the radical species has been determined by measuring the decay constant (UV-Vis spectroscopy).  相似文献   

16.
The complexes trans-[RuCl2(L){(S,S)-iPr-pybox}] ((S,S)-iPr-pybox = 2,6-bis[4′-(S)-isopropyloxazolin-2′-yl]pyridine, L = PMe3 (1), P(OMe)3 (2), PPh2(CH2CHCH2) (3), CNBn (5), CNCy (6) and MeCN (7)) have been synthesized by substitution of ethylene on the precursor trans-[RuCl2(η2-C2H4){(S,S)-iPr-pybox}]. This complex also reacts with cyclooctadiene (cod) or norbornadiene (nbd) and NaPF6, in refluxing methanol, giving the coordination compounds [RuCl(η4-cod){(S,S)-iPr-pybox}][PF6] (8) and [RuCl(η4-nbd){(S,S)-iPr-pybox}][PF6] (9). The structures of complexes [RuCl(CO)(PPh3)(H-pybox)][BF4] (H-pybox = 2,6-bis(dihydrooxazolin-2′-yl)pyridine) (4), 6 and 8, have been resolved by X-ray diffraction methods. The catalytic activity of the new complexes in transfer hydrogenation of acetophenone has also been examined.  相似文献   

17.
The synthesis and reaction of homoleptic iron(II) complexes with 2,6-di-adamantyl-substituted aryloxides [OC6H2-2,6-Ad-4-R] ([OArAdR], Ad = adamantyl, R = Me, iPr) are described. Monomeric two-coordinate iron aryloxides Fe(OArAdR)2 (R = Me, 1; iPr, 2) were synthesized by the reaction of Fe[N(SiMe3)2]2 with 2 equiv of HOArAdR. Treatment of 1 and 2 with 1-azidoadamantane resulted in intramolecular insertion of an adamantyl nitrene into a methylene C-H bond of the aryloxide adamantyl substituent, yielding the corresponding amine-aryloxide complexes Fe(OArAdR)(OArAdR-NHAd) (R = Me, 3; iPr, 4). Molecular structures of all these complexes are reported.  相似文献   

18.
The gas-phase thermolysis of the guanidinato aluminum amide precursor [Me2NC(NiPr)2]Al(NMe2)2 (1) in the oven temperature range of ambient temperatures to 600 °C has been investigated with matrix-isolation FTIR spectroscopy and time-of-flight mass spectrometry (argon as carrier gas). Precursor 1 fragments above 300 °C to form iPrCNCiPr (2) and monomeric Al(NMe2)3 (3m). Independent thermolysis series with 2 and the aluminum amide dimer 3d, [Al(NMe2)3]2, were conducted and been used to interpret the results of the fragmentation of precursor 1. Compound 3m was present in the thermolysis range of 350–450 °C and has been identified for the first time. Through a comparison of measured FTIR spectra with the calculated spectrum of 3m (D3 point group symmetry; B3LYP/6-31G(d) level of theory) all expected IR bands were found and could be assigned to normal modes. At thermolysis temperatures of ?500 °C signals indicative for H2CNCH3 (4) were found, showing that 3m fragments further at higher temperature. The thermolysis product 2 (iPrCNCiPr) withstands the higher thermolysis temperatures. From our study one can conclude that precursor 1 cleanly delivers the monomeric aluminum alane 3m, which then acts as the reactive material forming species.  相似文献   

19.
The reaction of in situ generated 1′-(diphenylphosphino)-1-lithioferrocene with isocyanates RNCO affords the respective phosphino-carboxamides Ph2PfcCONHR (fc = ferrocene-1,1′-diyl, R = cyclohexyl (2), and Ph (3)) in moderate yields. The coordination behaviour of 3 chosen as a representative was studied in palladium(II) and platinum(II) complexes. Depending on the metal precursor and the reaction conditions, the following compounds featuring this ligand as a P-monodentate or an O,P-chelating donor were isolated and characterised by spectroscopic methods (IR, multinuclear NMR and electrospray ionisation MS): trans-[PdCl2(3P)2] (5), trans-[PtCl2(3P)2] (6), cis-[PtCl2(3P)2] (7), [SP-4-4]-[(LNC)PdCl(3P)] (8; LNC = 2-[(dimethylamino-κN)methyl]phenyl-κC1), and [SP-4-3]-[(LNC)PdCl(32O,P)]SbF6 (9). Besides, the crystal structures of a phosphine oxide resulting by oxidation of 2, viz Ph2P(O)fcCONHCy (4), and of complexes 5·2Et2O and 9 have been determined by single-crystal X-ray diffraction analysis.  相似文献   

20.
The phosphite complexes cis-[PtMe2L(SMe2)] in which L = P(OiPr)3, 1a, or L = P(OPh)3, 1b, were synthesized by the reaction of cis,cis-[Me2Pt(μ-SMe2)2PtMe2] with 2 equiv. of L. If 4 equiv. of L was used the bis-phosphite complexes cis-[PtMe2L2] in which L = P(OiPr)3, 2a, or L = P(OPh)3, 2b, were obtained. The reaction of cis-[Pt(p-MeC6H4)2(SMe2)2] with 2 equiv. of L gave the aryl bis-phosphite complexes cis-[Pt(p-MeC6H4)2L2] in which L = P(OiPr)3, 2a′, or L = P(OPh)3, 2b′. Use of 1 equiv. of L in the latter reaction gave the bis-phosphite complex along with the starting complex in a 1:1 ratio.The complexes failed to react with MeI. The reaction of cis,cis-[Me2Pt(μ-SMe2)2PtMe2] with 2 equiv. of the phosphine PPh3 gave cis-[PtMe2(PPh3)2] and cis-[PtMe2(PPh3)(SMe2)] along with unreacted starting material. Reaction of cis-[PtMe2L(SMe2)], 1a and 1b with the bidentate phosphine ligand bis(diphenylphosphino)methane, dppm = Ph2PCH2PPh2, gave [PtMe2(dppm)], 8, along with cis-[PtMe2L2], 2. The reaction of cis-[PtMe2L(SMe2)] with 1/2 equiv. of the bidentate N-donor ligand NN = 4,4′-bipyridine yielded the binuclear complexes [PtMe2L(μ-NN)PtMe2L] in which L = P(OiPr)3, 3a, or L = P(OPh)3, 3b.The complexes were fully characterized using multinuclear NMR (1H, 13C, 31P, and 195Pt) spectroscopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号