首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The synthesis, characterization and chemistry of novel η3-allyl metal complexes (M = Ir, Rh) are described. The structures of compounds (C5Me4H)Ir(PPh3)Cl2 (1), (C5Me4H)Ir(PPh3)(η3-1-methylallyl)Br (3a), (C5Me4H)Ir(η4-1,3,5-hexatriene) (8), and (C5Me5)Rh(η3-1-ethylallyl)Br (5d) have been determined by X-ray crystallography. Structural comparisons among these complexes are discussed. It is found that the neutral metal allylic complex [CpIrCl(η3-methylallyl)] (5) ionizes in polar solvents to give [CpIr(η3-methylallyl)]+Cl (6) and reaches equilibrium (5 ? 6) at room temperature. Addition of tertiary phosphine ligands to neutral complexes such as [CpIr(η3-methylallyl)Cl], results in the formation of stable ionic phosphine adducts. Factors such as solvent, length of carbon chain, temperature and light are discussed with respect to the formation, stability and structure of the allyl complexes.  相似文献   

2.
Reaction of 3,4-dimethylphospholylthallium (Tl-1) with [CpMCl2]2 (M = Rh, Ir) leads to the formation of the dimeric species [(CpM)2(Me2C4H2P)3]+2 and 3 with bridging μ-η11-phospholyl ligands. The phosphametallocenium sandwich complexes [CpM(Me2C4(SiMe3)2P)]+7 (M = Rh) and 8 (M = Ir) could be obtained from the reaction of [CpMCl2]2 and the 2,5-bis(trimethylsilyl)-1-trimethylstannylphosphole 6, with the bulky trimethylsilyl groups preventing the phosphole from η1- and enforcing a η5-coordination. The structures of phospharhodocenium cation 7 and a byproduct 9 containing a phosphairidocenium moiety could be determined by X-ray diffraction.  相似文献   

3.
Chalcogen-stabilized dimolybdaboranes 3-5 (3: [(CpMo)2B4H5Se(Ph)], 4: [(CpMo)2B4H3Se2(SeCH2Ph)] and 5: [(CpMo)2B3H6(BSR)(μ-η1-SR)] (R = 2,6-(tBu)2-C6H2OH)) have been isolated from the mild pyrolysis of dichalcogenide ligands, RE-E‘R (R = Ph: E = S, E‘ = Se; R = CH2Ph, [2,6-(tBu)2-C6H2OH]: E = E‘ = Se, S) and [(CpMo)2B4H8], 2, an intermediate generated from the reaction of [CpMoCl4] (1) (Cp = η5-C5Me5), with [LiBH4.thf]. The geometry of [(CpMo)2B4H5Se(Ph)] is similar to that of [(CpMo)2B5H9], in which one BH3 unit on the open face is replaced by a triple bridged selenium atom. All the compounds have been characterized in solution by 1H, 11B, 13C NMR and IR spectroscopy and elemental analysis. The structural types were unequivocally established by X-ray crystallographic analysis of compounds 3-5.  相似文献   

4.
Reactions of a sulfido- and thiolato-bridged diiridium complex [(CpIr)2(μ-S)(μ-SCH2CH2CN)2] (Cp = η5-C5Me5) with [(CpMCl)2(μ-Cl)2] (M = Ir, Rh) afforded the sulfido- and thiolato-bridged trinuclear clusters [(CpM)(CpIr)23-S)(μ2-SCH2CH2CN)22-Cl)]Cl (4: M = Ir, 5: M = Rh). Upon treatment with XyNC (Xy = 2,6-Me2C6H3) in the presence of KPF6 at 60 °C, 4 was converted into a mixture of a mononuclear XyNC complex [CpIr(SCH2CH2CN)(CNXy)2][PF6] (6) and a dinuclear XyNC complex [{CpIr(CNXy)}2(μ-S)(μ-SCH2CH2CN)][PF6] (7). On the other hand, reactions of 4 and 5 with methyl propiolate in the presence of KPF6 at 60 °C resulted in the formation of a cyclic trimer of the alkyne 1,3,5-C6H3(COOMe)3 as the sole detectable organic product. The reactions proceeded catalytically with retention of the cluster cores of 4 and 5, whereby the activity of the former was much higher than that of the latter.  相似文献   

5.
Hydrogenation of cyclohexene with 0.1 mol% of the (nitrosyl)ruthenium catalyst [CpRu(NO)(C6H5)2] (1; Cp = η5-C5(CH3)5) under 1.0 MPa of H2 in water at 90 °C for 13 h afforded cyclohexane in 94% yield. The nitrosyl-bridged dinuclear complex [CpRu(μ2-NO)2RuCp] (2) and the mononuclear cyclohexene complex [CpRu(NO)(η2-C6H10)] (3), which also serve as catalyst precursors, have been obtained from the reaction mixture. X-ray crystallographic analyses of 2 and 3 have revealed that the bridging nitrosyl ligands in 2 form an almost planar Ru2N2 four-membered ring with the Ru–Ru distance of 2.5366(5) Å, whereas the nitrosyl ligand in 3 is linear. On the other hand, a ruthenium complex without a nitrosyl ligand [CpRu(CH3CN)3][OSO2CF3] proved to be less effective for this hydrogenation.  相似文献   

6.
Compound [NbCp′Me4] (Cp′ = η5-C5H4SiMe3, 1) reacted with several ROH compounds (R = tBu, SiiPr3, 2,6-Me2C6H3) to give the derivatives [NbCp′Me3(OR)] (R = tBu 2a, SiiPr32b, 2,6-Me2C6H32c). The diaryloxo tantalum compound [TaCpMe2(OR)2] (Cp = η5-C5Me5, R = 2,6-Me2C6H33) was obtained by reaction of [TaCpCl2Me2] with 2 equiv of LiOR (R = 2,6-Me2C6H3). Abstraction of one methyl group from these neutral compounds 1-3 with the Lewis acids E(C6F5)3 (E = B, Al) gave the ionic derivatives [NbCp′Me2X][MeE(C6F5)3] (X = Me 4-E. X = OR; R = SiiPr35b-E, 2,6-Me2C6H35c-E. E = B, Al) and [TaCpMe(OR)2][MeE(C6F5)3] (R = 2,6-Me2C6H36-E; E = B, Al). Polymerization of MMA with the aryloxoniobium compound 2c and Al(C6F5)3 gave syndiotactic PMMA in a low yield, whereas the tetramethylniobium compound 1 and the diaryloxotantalum derivative 3 were inactive.  相似文献   

7.
Four half-sandwich cobalt complexes, CpCo(2-PyS)2 (2), CpCo(2-PyS)2 · HI (3), CpCo(2-PyS) (4-PyS) (4), (CpCo)2(μ-PhS)2(μ-2-PyS)I (5) [Cp = pentamethylcyclopentadienyl, 2-PyS = 2-pyridinethiolate, 4-PyS = 4-pyridinethiolate, PhS = benzenethiolate] were successfully synthesized by the reactions of 2-pyridinethione, lithium 4-pyridinethiolate and lithium benzenethiolate with CpCo(2-PyS)I (1), respectively. Complexes 2 and 3 have the structures with two 2-pyridinethiolates ligands coordinated to the cobalt atom. Two different pyridinethiolates ligands can be identified in complex 4. The molecular structure of 5 consists of two Cp-Co fragments, which are triply bridged by three sulfur atoms from different ligands. The molecular structures of 3 and 5 were determined by X-ray crystallographic analysis. All the complexes have been well characterized by elemental analysis, NMR and IR spectra.  相似文献   

8.
Irradiation of CpRu(CO)2CH3 (1) in C6D6 at room temperature yields CpRu(CO)2C6D5 and CH3D (where Cp = n5-C5Me5). CpRu(CO)2CD3 (2) has also been prepared and similar irradiation in C6H6 yields CpRu(CO)2C6H5 (3) and CD3H. This latter reaction confirms that it is the methyl group bonded to ruthenium that is involved in the C-H activation process and not the methyl groups on the Cp ligand system. The compound CpRu(CO)2C6H5 (3) has been prepared for the first time in good yield by the reaction of CpRu(CO)2Br with NaBPh4. X-ray crystal structures of both CpRu(CO)2CH3 (1) and CpRu(CO)2C6H5 (3) have been determined and the results are reported and discussed.  相似文献   

9.
The syntheses of the compounds [M(Cp)(aeaz)(az)](OTf)2 (4, 5) (M = Rh(III), Ir(III); aeaz = C2H4NC2H4NH2, az = C2H4NH (3)) containing cationic N-(2-aminoethyl)aziridine-N,N′ chelate complexes are described. The bis-aziridine complexes [MCl(Cp)(az)2]Cl (M = Rh (1), M = Ir (2)) react with an excess of the aziridine (az) in the presence of AgO3SCF3 (=AgOTf) via AgCl precipitation and az addition followed by a metal-mediated coupling reaction, to give the compounds [M(Cp)(aeaz)(az)](OTf)2 (4, 5). The new aeaz ligand is formally the dimerisation product of az. Using the same reaction conditions with the analogous, but weaker Lewis acidic ruthenium(II) complex [RuCl(C6Me6)(az)2]Cl (6) an anion exchange reaction yielding [RuCl(C6Me6)(az)2]OTf (8) is observed. After purification, all compounds are fully characterized using IR, FAB-MS, 1H and 13C NMR spectroscopy. The single crystal X-ray structure analysis reveals a distorted octahedral geometry for all complexes.  相似文献   

10.
Pyrolysis of an in-situ generated intermediate, produced in the reaction of [CpMoCl4], 1, (Cp = η5-C5Me5) with [LiBH4·THF], with an excess of difuryl ditelluride in toluene at 90 °C yielded syn and anti isomers of [CpMo(O)(μ-Te)]2 (2, 3) and [Cp2Mo2O2(μ-O)(μ-Te)] (4, 5). In a similar fashion, dibenzyl diselenide yielded syn and anti isomers of [CpMo(O)(μ-Se)]2 (6, 7), along with the known nido-[(CpMo)2B4H8Se2]. Note that in parallel with 2-7, [(CpMo)2B5H9] was isolated as the major product in both cases. Compounds 2-7 have been isolated in modest yield as orange to brown crystalline solids. All the new compounds have been characterized in solution by mass, IR, 1H, 13C, 77Se and 125Te NMR spectroscopy, and the structural types were unequivocally established by crystallographic analysis of 2-4 and 7.  相似文献   

11.
Reactions of phenylethynyl lithium with substituted cyclopentenones gave the corresponding pendant phenylethynyl substituted cyclopentadienes. Subsequent deprotonation and transmetallation with TiCl4·2THF, ZrCl4, and CpZrCl3 yielded the alkyne-functionalized metallocene complexes [C5Me4(CCPh)]2MCl2 [M = Ti (1), Zr (2)], Cp[C5Me4(CCPh)]ZrCl2 (3), and Cp[C5H2R′2(CCPh)]ZrCl2 [R′ = Me (4), Ph (5)]. These complexes were fully characterized by 1H NMR, 13C NMR, MS spectra, and elemental analysis. The molecular structure of 2 was determined by single crystal X-ray diffraction analysis. Ethylene polymerization was studied with these complexes in the presence of methylaluminoxane (MAO).  相似文献   

12.
Treatment of [Cp∗Ir(ppy)Cl] (Cp∗ = η5-C5Me5, ppyH = 2-(2-pyridyl)phenyl) with Ag(OTf) (OTf− = triflate) in MeOH and MeCN gave the solvento complexes [Cp∗Ir(ppy)(solv)][OTf] (solv = MeOH (1) and MeCN (2)). Complex 1 is capable of catalyzing oxidation and azirdination of styrene with PhIO and PhINTs (Ts = tosyl), respectively. Treatment of 2 with a stoichiometric amount of PhINTs resulted in the insertion of the NTs group into the Ir-C(ppy) bond and formation of [Cp∗Ir(η2-ppy-NTs)(MeCN)][OTf] (3). Treatment of 1 with R2E2 afforded [Cp∗Ir(ppy)(η1-R2E2)][OTf] (E = S (4), Se (5), Te (6)). Reactions of 4 and 5 with Ag(OTf) resulted in cleavage of the E-E bond and insertion of an ER group into the Ir-C(ppy) bond. The crystal structures of complexes 2-6 and [Cp∗Ir(η2-ppy-S-p-tol)(H2O)][OTf]2 have been determined.  相似文献   

13.
14.
The one-pot reaction of [CpMo(NO)(CO)2] with elemental sulfur and dimethyl acetylenedicarboxylate (C2Z2 (Z = COOMe)) gave the [2+2] cycloadduct of the mononuclear molybdenum dithiolene complex [CpMo(NO)(S2C2Z2)(C2Z2)] (1), and some binuclear complexes:[CpMo(NO)(S2C2Z2)]2 (2), [Cp2Mo2(NO)2S2(S2C2Z2)] (3) and [CpMo(NO)S2]2 (4).The reaction of [CpMo(NO)(Cl)(μ-Cl)]2 with OC{S2C2(COOMe)2} in the presence of sodium methoxide also produced complex 2 and the paramagnetic CpMo bisdithiolene complex [CpMo(S2C2Z2)2] (5, Z = COOMe).The structures of complexes 1-5 were determined by X-ray crystal structure analysis.The nitrosyl ligands of complexes 1-4 showed a linear coordination to the molybdenum center (the Mo-N-O bond angles = 169-174°), and their N-O bond lengths were 1.17-1.20 Å.In the binuclear complexes 2-4, two nitrosyl ligands were placed at cis-position.Complexes 1 and 2 were characterized by cyclic voltammetry and spectroelectrochemistry (visible and IR). The electrochemical reduction of the dimeric complex 2 formed the monomeric dithiolene complex[CpMo(NO)(S2C2Z2)] (X) whose lifetime was several minutes. When the anion X was electrochemically oxidized, the coordinatively unsaturated species X was generated, but it was immediately dimerized to afford the original dimeric complex 2. The reduction of the complex 1 included the elimination of the bridged DMAD moiety (C2Z2) to give the anion X.  相似文献   

15.
The binuclear half-sandwich iridium complexes {CpIrCl2}2(μ-2,6(7)-bis(4-pyridyl)-1,4,5,8-tetrathiafulvalene) (3) and {CpIr[E2C2(B10H10)]}2(μ-2,6(7)-bis(4-pyridyl)-1,4,5,8-tetrathiafulvalene) (E = S(5a), Se(5b)) were prepared from the reaction of [CpIrCl(μ-Cl)]2 or the “pseudo-aromatic” half-sandwich iridium complex CpIr[E2C2(B10H10)] (E = S(4a), Se(4b)) with a tetrathiafulvalene (TTF) derivative 2,6-bis(4-pyridyl)-1,4,5,8-tetrathiafulvalene (2) at room temperature. The complexes (3, 5a and 5b) have been fully characterized by IR and NMR spectroscopy, as well as elemental analysis. And the molecular structures of 2 and 5a were established through X-ray crystallography. It is interesting that infinite tunnels are created by repeating ‘buckled bowl’ molecules of 5a.  相似文献   

16.
The reaction of (η5-C9H2Me5)Rh(1,5-C8H12) (1) with I2 gives the iodide complex [(η5-C9H2Me5)RhI2]2 (2). The solvate complex [(η5- C9H2Me5)Rh(MeNO2)3]2+ (generated in situ by treatment of 2 with Ag+ in nitromethane) reacts with benzene and its derivatives giving the dicationic arene complexes [(η5-9H2Me5)Rh(arene)]2+ [arene = C6H6 (3a), C6Me6 (3b), C6H5OMe (3c)]. Similar reaction with the borole sandwich compound CpRh(η5-C4H4BPh) results in the arene-type complex [CpRh(μ-η56-C4H4BPh)Rh(η5-C9H2Me5)]2+ (4). Treatment of 2 with CpTl in acetonitrile affords cation [(η5-C9H2Me5)RhCp]+ (5). The structure of [3c](BF4)2 was determined by X-ray diffraction. The electrochemical behaviour of complexes prepared was studied. The rhodium-benzene bonding in series of the related complexes [(ring)Rh(C6H6)]2+ (ring = Cp, Cp, C9H7, C9H2Me5) was analyzed using energy and charge decomposition schemes.  相似文献   

17.
N-heterocyclic bis-carbene ligand (bis-NHC) which was derived from 1,1′-diisopropyl-3,3′-ethylenediimidazolium dibromide (L·2HBr) via silver carbene transfer method, reacted with [(η6-p-cymene)RuCl2]2 and [CpMCl2]2 (Cp = η5-C5Me5, M = Ir, Rh) respectively, afforded complexes [(η6-p-cymene)RuCl2]2(L) (1), [CpIrCl2]2(L) (2) and [CpRhCl(L)][CpRhCl3] (3). When [CpIrCl2]2 was treated with 2 equiv AgOTf at first, and then reacted with bis-NHC ligand, [CpIrCl(L)]OTf (4) was obtained. The molecular structures of complexes 1-4 were determined by X-ray single crystal analysis, showing that 1 and 2 adopted bridging coordination mode, 3 and 4 adopted chelating coordination mode. All of these complexes were characterized by 1H, 13C NMR spectroscopy and element analysis.  相似文献   

18.
Two hetero-binuclear complexes [CpCoS2C2(B9H10)][Rh(COD)] (2a) and [CpCoSe2C2(B10H10)][Rh(COD)] (2b) [Cp = η5-pentamethylcyclopentadienyl, COD = cyclo-octa-1,5-diene (C8H12)] were synthesized by the reactions of half-sandwich complexes [CpCoE2C2(B10H10)] [E = S (1a), Se (1b)] with low valent transition metal complexes [Rh(COD)(OEt)]2 and [Rh(COD)(OMe)]2. Although the reaction conditions are the same, the structures of two products for dithiolato carborane and diselenolato carborane are different. The cage of the carborane in 2a was opened; However, the carborane cage in 2b was intact. Complexes 2a and 2b have been fully characterized by 1H, 11B NMR and IR spectroscopy, as well as by elemental analyses. The molecular structures of 2a and 2b have been determined by single-crystal X-ray diffraction analyses and strong metal-metal interactions between cobalt and rhodium atoms (2.6260 Å (2a) and 2.7057 Å (2b)) are existent.  相似文献   

19.
The formation of thiyl radicals from [CpRuIII3SSS′-tpdt}] (1A) and [CpRuIII3SSN-apdt}] (1B) {Cp = η5-C5Me5; tpdt = S(CH2CH2S)2; apdt = HN(CH2CH2S)2} has been initiated by thiolate alkylation or oxidation with iodine. Subsequent electron transfer processes yielded disulfide-bridged dinuclear complexes. The mechanistic pathways of these processes will be discussed.  相似文献   

20.
A new route was used to synthesize half-sandwich rhodium complexes containing both N-heterocyclic carbenes (NHC) and carborane ligands. The rhodium carbene complexes CpRh(L)[S2C2(B10H10)] (Cp = pentamethylcyclopentadienyl, L = 1,3-dimethylimidazolin-2-ylidene; 4) can be obtained from the reaction of CpRh(L)Cl2 (2) with Li2S2C2(B10H10) or from the reaction of CpRh[S2C2(B10H10)] (3) with silver-NHC complex prepared by direct reaction of an imidazolium precursor and Ag2O. Complexes 2 and 4 were characterized by IR, NMR spectroscopy, element analysis and X-ray structure analyses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号