首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of mononuclear ruthenium complexes containing pyridine- and pyrimidine-2-thiolato ligands was prepared and characterized. The new compounds of general formula CpRu(PPh3)(κ2S,N-SR) (1) (SR = pyridine-2-thiolate (a), pyrimidine-2-thiolate (b)) were prepared directly by reacting the thiolato anions (RS) with CpRu(PPh3)2Cl. Complexes 1 readily react with NOBF4 or CO in THF at room temperature to give [CpRu(PPh3)(NO)(κ1S-HSR)][BF4]2 (2) and CpRu(PPh3)(CO)(κ1S-SR) (3), respectively. The one-pot reaction of CpRu(PPh3)2Cl, thiolato anions and bis(diphenylphosphino)ethane (dppe) gave CpRu(dppe)(κ1S-SR) [dppe: Ph2PCH2CH2PPh2 (4)]. The complex salts, [CpRu(PPh3)21S-HSR)]BPh4 (5) are prepared by mixing CpRu(PPh3)2Cl, HSR and NaBPh4 at room temperature. The structures of CpRu(PPh3)(κ2S,N-Spy) (1a), [CpRu(PPh3)(NO)(κ1S-HSpy)][BF4]2 (2a) and CpRu(PPh3)(CO)(κ1S-Spy) (3a), (py = C5H4N) have been determined.  相似文献   

2.
Reactions between 1,2-dichlorohexafluorocyclopentene and Ru(CCH)(dppe)Cp∗ or Ru(CCCCLi)(dppe)Cp∗ have given Ru(CC-c-C5F6Cl-2)(dppe)Cp∗ 4 and Ru(CCCC-c-C5F6Cl-2)(dppe)Cp∗ 7, respectively. Ready hydrolysis of 4 to the ketone Ru{CC[c-C5F4Cl(O)]}(dppe)Cp∗ 5 occurs, which can be converted to Ru{CC(c-C5F4Cl[C(CN)2])}(dppe)Cp∗ 6 by treatment with CH2(CN)2/basic alumina. Spectroscopic, electrochemical and XRD structural studies for 4-7 are reported: for 6, these suggest that the cyanated fluorocarbon ligand is a very powerful electron-withdrawing group.  相似文献   

3.
The hydrosulfido complexes CpRu(L)(L′)SH react with one equivalent of O-alkyl oxalyl chlorides (ROCOCOCl) to form the corresponding O-alkylthiooxalate complexes CpRu(L)(L′)SCOCO2R (L = L′ = PPh3 (1), (2); L = PPh3, L′ = CO (3); R = Me (a), Et (b)). The reactions of the hydrosulfido complexes with half equivalent of oxalyl chloride produce the bimetallic complexes [CpRu(L)(L′)SCO]2 (L = L′ = PPh3 (4), (5); L = PPh3, L′ = CO (6)). The crystal structures of CpRu(PPh3)2SCOCO2Me (1a) and CpRu(dppe)SCOCO2Et (2b) are reported.  相似文献   

4.
4-Mercapto-1,2-dithiole-3-thiones are easily prepared by deprotonation of terminal alkynes followed by sequential treatment with carbon disulfide, sulfur and acid; addition of alkylating agents at the last stage gives 4-alkylthio-1,2-dithiole-3-thiones instead.  相似文献   

5.
6.
7.
Treatment of the hydrosulfido tungsten complex CpW(CO)3SH with acid chlorides (RCOCl) or sulfonyl chlorides (RSO2Cl) affords CpW(CO)3SCOR (1) [R = Me (a), CH2Cl (b), Ph (c), 4-C6H4NO2 (d)] and CpW(CO)3SSO2R (2) [R = Me (a), Ph (b), 4-C6H4Cl (c), 4-C6H4NO2 (d)], respectively. The novel complexes, 1 and 2, were fully characterized by elemental analyses, IR and 1H NMR spectroscopy. The solid state structures of CpW(CO)3SCOPh (1c) and CpW(CO)3SSO2-4-C6H4Cl (2c) were determined by an X-ray crystal structure analysis.  相似文献   

8.
This paper reports facile preparation of half-sandwich trihydrido complexes of ruthenium based on the reactions of the readily available precursors [Cp(R3P)Ru(NCCH3)2][PF6] with LiAlH4. The target complexes were characterized by spectroscopic methods and X-ray structure analysis of .  相似文献   

9.
Three cis-Ru(dppm)2XY complexes (XY?=?C2O4, 1; X?=?Cl, Y?=?N3, 2; X?=?Y?=?N3, 3) were prepared by reactions of cis-Ru(dppm)2Cl2 with (NH4)2C2O4, a mixture of NaN3 and NaPF6, and only NaN3, respectively, while 3 could also be obtained from further reaction of 2 with NaN3 undergoing a facile chloride abstraction. All complexes have been characterized by IR, NMR, UV–vis, and luminescence spectroscopic analyses as well as X-ray diffraction studies. Of these structures, 1 shows oxalate coordinates to Ru as a chelating ligand, while 2 displays Ru and azide linear, and 3 gives two azide groups cis to each other, which are different from two substituting ligands commonly lying in trans positions in Ru(P–P)2 complexes by using cis-Ru(dppm)2Cl2 as a precursor.  相似文献   

10.
Heterocyclic-thiocarboxylato complexes of iron, CpFe(CO)2SCO-het (het?=?2-C4H3O, 2-C4H3S, CH2-2-C4H3S), have been synthesized via the reaction of iron sulfides, (μ-S x )[CpFe(CO)2]2 (x?=?3,?4), with heterocyclic acid chlorides het-COCl. Photolytic substitutions of these complexes CpFe(CO)2SCO-het with triphenylphosphine, triethylphosphite, triphenylarsine, and triphenylantimony [ER3 (E?=?P, R?=?Ph, OC2H5; E?=?As, Sb, R?=?Ph)] exclusively gave the monosubstituted complexes CpFe(CO)(ER3)SCO-het in good yields. The new complexes have been characterized by elemental analysis, UV-Vis, IR, 1H, and 31P NMR spectroscopies and by cyclic voltammetry for a representative family (1, 4a–d). The solid state structures of CpFe(CO)2SCO(2-C4H3S) (2), CpFe(CO)(PPh3)SCO(2-C4H3S) (5a), CpFe(CO)(AsPh3)SCO(2-C4H3S) (5b), and CpFe(CO)(SbPh3)SCO(2-C4H3S) (5c) were determined by X-ray crystal structure analysis.  相似文献   

11.
Reactions of [Ru(PPh3)3Cl2] with ROCS2K in THF at room temperature and at reflux gave the kinetic products trans-[Ru(PPh3)2(S2COR)2] (R = nPr 1, iPr 2) and the thermodynamic products cis-[Ru(PPh3)2(S2COR)2] (R = nPr 3, iPr 4), respectively. Treatment of [RuHCl(CO)(PPh3)3] with ROCS2K in THF afforded [RuH(CO)-(S2COR)(PPh3)2] (R = nPr 5, iPr 6) as the sole isolable products. Reaction of [RuCl2(PPh3)3] with tetramethylthiuram disulfide [Me2NCS2]2 gave a Ru(III) dithiocarbamate complex, [Ru(PPh3)2(S2CNMe2)Cl2] (7). This reaction involved oxidation of ruthenium(II) to ruthenium(III) by the disulfide group in [Me2NCS2]2. Treatment of 7 with 1 equiv. of [M(MeCN)4][ClO4] (M = Cu, Ag) gave the stable cationic ruthenium(III)-alkyl complexes [Ru{C(NMe2)QC(NMe2)S}(S2CNMe2)(PPh3)2][ClO4] (Q = O 8, S 9) with ruthenium-carbon bonds. The crystal structures of complexes 1, 2, 4·CH2Cl2, 6, 7·2CH2Cl2, 8, and 9·2CH2Cl2 have been determined by single-crystal X-ray diffraction. The ruthenium atom in each of the above complexes adopts a pseudo-octahedral geometry in an electron-rich sulfur coordination environment. The 1,1′-dithiolate ligands bind to ruthenium with bite S-Ru-S angles in the range of 70.14(4)-71.62(4)°. In 4·CH2Cl2, the P-Ru-P angle for the mutually cis PPh3 ligands is 103.13(3)°, the P-Ru-P angles for other complexes with mutually trans PPh3 ligands are in the range of 169.41(4)-180.00(6)°. The alkylcarbamate [C(NMe2)QC(NMe2)S] (Q = O, S) ligands in 8 and 9 are planar and bind to the ruthenium centers via the sulfur and carbon atoms from the CS and NC double bonds, respectively. The Ru-C bond lengths are 1.975(5) and 2.018(3) Å for 8 and 9·2CH2Cl2, respectively, which are typical for ruthenium(III)-alkyl complexes. Spectroscopic properties along with electrochemistry of all complexes are also reported in the paper.  相似文献   

12.
Stoichiometric and catalytic reaction of Ru(II) phosphine complexes with alkynes, olefins, and enynes are described. The hydride complex RuCl(CO)H(PPh3)3 (1) reacts with the double bond of a cis-enyne whereas it reacts with triple bonds of trans-enynes. Metathesis of vinyl silanes with olefins are catalyzed by 1 where β-Si elimination is the key step. Dimerizations of tBu- and Me3Si-substituted acetylanes into the corresponding butatrienes are catalyzed by Ru(II) active species as studied by isolation of the intermediates. A model reaction for the crucial step of the catalytic cycle, formation of a Ru vinylidene complex from acetylene, has been fully simulated by ab initio-MO calculations.  相似文献   

13.
The reaction of sulfur, carbon disulfide, and enamines at room temperature leads mainly or exclusively to 3H-1,2-dithiole-3-thiones; these are occasionally accompanied by 2H-1,3-dithiole-2-thiones, which can also be prepared by a modified procedure. Many enamines react with sulfur at room temperature to form thioamides. At about 50°C, enamines of acetophenone give 2-benzylidene-4-phenyl-2H-1,3-dithiol. The action of isothiocyanates and sulfur on enamines leads to the formation of thiazolidine-2-thiones. 2H-Thiopyran-2-thiones can be prepaAred from enamines or dienamines with carbon disulfide at room temperature. The reaction of ketimines (Schiff bases) with carbon disulfide and sulfur yields 3H-1,2-dithiole-3-thiones or isothiazoline-5-thiones. The reaction of alkynes with sulfur and carbon disulfide leads to 2H-1,3-dithiole-2-thiones. Nitriles containing active methylene groups react with carbon disulfide and sulfur to form 5-amino-3H-1,2-dithiole-3-thiones. When isothiocyanates are used instead of CS2, the reaction leads to δ4-4-amino-thiazoline-2-thiones.  相似文献   

14.
The Pd(0)/Cu(I)-catalysed reactions between Co33-CBr) (CO)9 and W(CCCCH)(CO)3Cp gives the C5 complex {Cp(OC)3W}CCCCC{Co3(CO)9} (2). Similarly, Co33-CBr)(μ-dppm)(CO)7 and W(CCCCH)(CO)3Cp or Ru(CCCCH)(dppe)Cp* give {Cp(OC)3W}CCCCC{Co3(μ-dppm)(CO)7} and {Cp*(dppe)Ru}CCCCC{Co3(μ-dppmn)(CO)7} (5). An attempt to prepare a C3 analogue from Ru(CCH)(PPh3)2Cp and Co33-CBr)(CO)9 gave instead the acyl derivative {Cp(Ph3P)2Ru}CCC(O)C{Co3(CO)8(PPh3)} (7). The X-ray structures of 2, 5 and 7 are reported: the C5 chains in 2 and 5 have an essentially unperturbed -CC-CC-C formulation.  相似文献   

15.
The complexes trans-[RuCl2(L){(S,S)-iPr-pybox}] ((S,S)-iPr-pybox = 2,6-bis[4′-(S)-isopropyloxazolin-2′-yl]pyridine, L = PMe3 (1), P(OMe)3 (2), PPh2(CH2CHCH2) (3), CNBn (5), CNCy (6) and MeCN (7)) have been synthesized by substitution of ethylene on the precursor trans-[RuCl2(η2-C2H4){(S,S)-iPr-pybox}]. This complex also reacts with cyclooctadiene (cod) or norbornadiene (nbd) and NaPF6, in refluxing methanol, giving the coordination compounds [RuCl(η4-cod){(S,S)-iPr-pybox}][PF6] (8) and [RuCl(η4-nbd){(S,S)-iPr-pybox}][PF6] (9). The structures of complexes [RuCl(CO)(PPh3)(H-pybox)][BF4] (H-pybox = 2,6-bis(dihydrooxazolin-2′-yl)pyridine) (4), 6 and 8, have been resolved by X-ray diffraction methods. The catalytic activity of the new complexes in transfer hydrogenation of acetophenone has also been examined.  相似文献   

16.
A brief history of the seminal discoveries in the field of bimetallic cluster complexes with their structures is presented. A review of some recent studies of palladium and platinum-ruthenium cluster complexes is concluded with a discussion of applications of these complexes in the area of homogeneous hydrogenation catalysis of alkynes.  相似文献   

17.
Thioethers PhC2H4SMe, PhC3H6SiPr and MeSAllyl form substitutionally labile monomeric adducts (p-cymene)RuCl2(SRR′) (2a-c) upon treatment with the {(p-cymene)RuCl2}2 dimer (p-cymene = η6-MeC6H4iPr-1,4). Pure adducts were obtained by crystallization from CH2Cl2/Et2O, and 2a,c as well as the bis(thioether) complex (3) were studied by X-ray crystallography. The trichloro bridged diruthenium complex is formed as a byproduct in the preparation of 3 and was also crystallographically characterized. In solution, pure samples 2a-c equilibrate with free thioether and the dimeric starting complex 1. The amount of 1 present in these mixtures increases with increasing bulk of the thioether substituents. Attempts to thermally replace the cymene ligand by the dangling arene substituent of the thioether ligand of 2a,b failed. Complexes 2a-c as well as the dimethylsufide derivative 2d were studied by cyclic voltammetry and display a close to reversible (2a,c,d) or partially reversible (2b) oxidation near +0.85 V and an irreversible reduction at rather negative potential. New peaks observed after oxidation and reduction point to dissociation of the thioether ligand as the main decomposition pathway of the associated radical cations and anions.  相似文献   

18.
Two families of arene ruthenium oxinato complexes of the types [(η6-arene)Ru(η2-N,O-L)Cl] and [(η6-arene)Ru(η2-N,O-L)(OH2)]+ have been synthesized from the dinuclear precursors [(η6-arene)RuCl2]2 (arene = para-cymeme or hexamethylbenzene) and the corresponding oxine LH (LH = 8-hydroxyquinoline, 5-chloro-8-hydroxyquinoline, 5,7-dichloro-8-hydroxyquinoline, 5-nitro-8-hydroxyquinoline, 5,7-dimethyl-8-hydroxyquinoline, 5,7-dichloro-2-methyl-8-hydroxyquinoline). The molecular structures of the neutral chloro complexes [(η6-C6Me6)Ru(η2-N,O-L)Cl] (LH = 8-hydroxyquinoline, 5,7-dichloro-2-methyl-8-hydroxyquinoline) and [(η6-MeC6H4Pri)Ru(η2-N,O-L)Cl] (LH = 5,7-dichloro-2-methyl-8-hydroxyquinoline) as well as those of the cationic aqua derivatives [(η6-MeC6H4Pri)Ru(η2-N,O-L)(OH2)]+ (LH = 8-hydroxyquinoline, 5,7-dimethyl-8-hydroxyquinoline), isolated as the tetrafluoroborate salts, show in all cases a piano-stool arrangement with the arene ligand, the chelating oxinato ligand and the chloro or the aqua ligand surrounding the ruthenium center in a pseudo-tetrahedral fashion. The analogous reaction of [(η6-MeC6H4Pri)RuCl2]2 with other N,O-chelating ligands such as 2-pyridinemethanol or tetrahydrofurfurylamine did not give the expected analogs but resulted in the formation of the complexes [(η6-MeC6H4Pri)Ru(η2-NC5H4CH2OH)Cl]+ and [(η6-MeC6H4Pri)Ru(η1-NHCH2C4H3O)Cl2]. The neutral and cationic complexes of the types [(η6-arene)Ru(η2-N,O-L)Cl] and [(η6-arene)Ru(η2-N,O-L)(OH2)]+ have been found to catalyze the hydrogenation of carbon dioxide to give formate in alkaline aqueous solution with catalytic turnovers up to 400.  相似文献   

19.
Interaction of Ni(allyl)2 and bidentate nitrogen-containing ligands (phenanthroline-1,10; bis(2,6-diisopropylphenyl)diazabutadiene) has been studied. It has been shown that coordination of diimine ligands proceeds with transfer of an allylnickel group to the diimine frame and formation of a covalent Ni-N bond giving rise to imine(amide)Ni(II) complexes. In the case of phenanthroline dearomatization of one heteroaromatic ring takes place. The low-spin imine(amide)allyl complexes (allyl)Ni(C15H15N2) (1) and (allyl)Ni(C29H42N2) (3) have been isolated as crystals and characterized by solution spectroscopy. Combining two molar equivalents of phenanthroline-1,10 with Ni(allyl)2 results in the transfer of both allyl groups and formation of the high-spin imine(amide)Ni(II) complex Ni(C15H15N2)2 (2).  相似文献   

20.
Hydrosilylation of terminal alkynes with a variety of silanes catalyzed by Cl2(PCy3)2RuCHPh (1) affords mainly the Z-isomer via trans addition in excellent yields. The presence of a hydroxyl group in close proximity to the triple bond was observed to exert a strong directing effect, resulting in the highly selective formation of the α-isomer. Intramolecular hydrosilylation of a homopropargylic silyl ether was demonstrated to give the cis addition product.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号