首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The cationic aniline complex [CpRh(η6-2,6-(Me2CH)2C6H3NH2)](OTf)2 (1) was prepared from either [CpRh(η2-NO3)(η1-OTf)] or [CpRh(OH2)3](OTf)2 and 2,6-diisopropylaniline. Complex 1 underwent substitution with phosphines or phosphites, indicating the labile character of the η6-aniline ligand. Complex 1 mediated cycloaddition reactions of several alkynes in refluxing ethanol: the [2 + 2] dimerization for PhCCPh and the [2 + 2 + 1] trimerization for PhCCH and CH3C6H4CCH. The unexpected cyclobutadiene complex [CpRh(η4-C4(C(O)CH3)2H(SiMe3))] was obtained from complex 1 and Me3SiCCCCSiMe3 and structurally characterized by X-ray diffraction.  相似文献   

2.
Addition of [I(py)2]BF4 to Ru(CCH)(dppe)Cp∗ gave the iodovinylidene [Ru(CCHI)(dppe)Cp∗]BF41, which could be deprotonated to Ru(CCI)(dppe)Cp∗ 2. The attempted preparation of Ru(CCCCI)(dppe)Cp∗, followed by derivatisation with tcne, gave the dienynyl Ru{CCC[C(CN)2]CIC(CN)2}(dppe)Cp∗ 3. The Pd(0)/Cu(I)-catalysed reaction of 3 with Ru{CCCCAu(PPh3)}(dppe)Cp∗ afforded Ru{CCCC(CN)2CC(CN)2Au(PPh3)}(dppe)Cp∗ 4 by formal replacement of I+ by [Au(PPh3)]+. XRD structures of 1-4 are reported.  相似文献   

3.
Reactions between 1,2-dichlorohexafluorocyclopentene and Ru(CCH)(dppe)Cp∗ or Ru(CCCCLi)(dppe)Cp∗ have given Ru(CC-c-C5F6Cl-2)(dppe)Cp∗ 4 and Ru(CCCC-c-C5F6Cl-2)(dppe)Cp∗ 7, respectively. Ready hydrolysis of 4 to the ketone Ru{CC[c-C5F4Cl(O)]}(dppe)Cp∗ 5 occurs, which can be converted to Ru{CC(c-C5F4Cl[C(CN)2])}(dppe)Cp∗ 6 by treatment with CH2(CN)2/basic alumina. Spectroscopic, electrochemical and XRD structural studies for 4-7 are reported: for 6, these suggest that the cyanated fluorocarbon ligand is a very powerful electron-withdrawing group.  相似文献   

4.
Complexes M(CCCSiMe3)(CO)2Tp′ (Tp′ = Tp [HB(pz)3], M = Mo 2, W 4; Tp′ = Tp [HB(dmpz)3], M = Mo 3) are obtained from M(CCCSiMe3)(O2CCF3)(CO)2(tmeda) (1) and K[Tp′].Reactions of 2 or 4 with AuCl(PPh3)/K2CO3 in MeOH afforded M{CCCAu(PPh3)}(CO)2Tp′ (M = Mo 5, W 6) containing C3 chains linking the Group 6 metal and gold centres.In turn, the gold complexes react with Co33-CBr)(μ-dppm)(CO)7 to give the C4-bridged {Tp(OC)2M}CCCC{Co3(μ-dppm)(CO)7} (M = Mo 7, W 8), while Mo(CBr)(CO)2Tp and Co33-C(CC)2Au(PPh3)}(μ-dppm)(CO)7 give {Tp(OC)2Mo}C(CC)2C{Co3(μ-dppm)(CO)7} (9) via a phosphine-gold(I) halide elimination reaction. The C3 complexes Tp′(OC)2MCCCRu(dppe)Cp (Tp′ = Tp, M = Mo 10, W 11; Tp′ = Tp, M = Mo 12) were obtained from 2-4 and RuCl(dppe)Cp via KF-induced metalla-desilylation reactions. Reactions between Mo(CBr)(CO)2Tp and Ru{(CC)nAu(PPh3)}(dppe)Cp (n = 2, 3) afforded {Tp(OC)2Mo}C(CC)n{Ru(dppe)Cp} (n = 2 13, 3 14), containing C5 and C7 chains, respectively. Single-crystal X-ray structure determinations of 1, 2, 7, 8, 9 and 12 are reported.  相似文献   

5.
Proto-desilylation of 1-(Me3SiCC)-1′-{Cp(dppe)RuCC}Fc′ (1) afforded the corresponding ethynyl derivative 2, from which the green Co2(μ-dppm)n(CO)8−2n (n = 0, 1) adducts 3 and 4 were obtained. Replacement of the ethynyl proton in reactions between 2 and AuCl(PPh3), Hg(OAc)2 or FeCl(dppe)Cp gave complexes 1-(RCC)-1′-{Cp(dppe)RuCC}Fc′ [R = Au(PPh3) 5, 1/2Hg 6, Fe(dppe)Cp8]; the latter gave bis-vinylidene 9 with MeI, characterised (as was 2) by a single crystal X-ray study. Oxidative coupling of 2 (CuCl/tmeda/acetone, air) gave diyne 10, while coupling of 5 with Co33-CBr)(μ-dppm)(CO)7 afforded 1-{Cp(dppe)RuCC}-1′-{(OC)7(μ-dppm)Co33-CCC)}Fc′ (11). Cyclic voltammetric measurements indicated that there was no significant electronic coupling between the end-groups through the ferrocene centre in any of these compounds.  相似文献   

6.
In contrast to the simple diynyl complexes formed in reactions between HCCCCFc and MCl(dppe)Cp∗; (M = Fe, Ru), an analogous reaction with RuCl(PPh3)2Cp∗; in the presence of KPF6 and dbu resulted in dimerisation of the diyne at the Ru centre to afford a mixture of [Ru{η12-C(CCFc)C(L)CHCCCHFc}(PPh3)Cp∗]PF6 (L = dbu 1, PPh32). Similar reactions with RuCl(PR3)2L gave [Ru{η12-C(CCFc)C(dbu)CHCCCHFc}(PR3)L]PF6 (L = Cp, R = Ph 3, m-tol 4; L = η5-C9H7, R = Ph 5). The reaction between 3 and I2, followed by crystallization of the paramagnetic product from MeOH, afforded the dicationic [Ru{C(CCFc)C(dbu)CHC(OMe)C(OMe)CHFc}(PPh3)Cp](I3)26. The molecular structures of 2·2CH2Cl2 and 6.S (S = 2CH2Cl2, C6H6) were determined by single-crystal XRD studies.  相似文献   

7.
The synthesis of the new complexes Cp*(dppe)FeCC2,5-C4H2SR (Cp* = 1,2,3,4,5-pentamethylcyclopentadienyl; dppe = 1,2-bis(diphenylphosphino)ethane; 2a, R = CCH; 2b, R = CCSi(CH3)3; 2c, R = CCSi(CH(CH3)2)3; 3a, R = CC2,5-C4H2SCCH; 3c, R = CC2,5-C4H2SCCSi(CH(CH3)2)3) is described. The 13C NMR and FTIR spectroscopic data indicate that the π-back donation from the metal to the carbon rich ligand increases with the size of the organic π-electron systems. The new complexes were also analyzed by CV and the chemical oxidation of 2a and 3c was carried out using 1 equiv of [Cp2Fe][PF6]. The corresponding complexes 2a[PF6] and 3c[PF6] are thermally stable, but 2a[PF6] was too reactive to be isolated as a pure compound. The spectroscopic data revealed that the coordination of large organic π-electron systems to the iron nucleus produces only a weak increase of the carbon character of the SOMO for these new organoiron(III) derivatives.  相似文献   

8.
The first luminescent rhenium(I)-gold(I) hetero organometallics, Re{phenAu(PPh3)}(CO)3Cl (3) and Re{(PPh3)AuphenAu(PPh3)}(CO)3Cl (4), have been prepared using the gold(I) complex AuCl(PPh3) (PPh3 = triphenylphosphine) and the novel rhenium(I) complexes Re(phenH)(CO)3Cl (5) (phenH = 3-ethynyl-1,10-phenanthroline) or Re(HphenH)(CO)3Cl (6) (HphenH = 3,8-bis(ethynyl)-1,10-phenanthroline). All the present rhenium(I) complexes 3-6 were revealed to possess a facial configuration (fac-isomer) with respect to the three carbonyl ligands. The main frameworks for these new gold(I) organometallics were constructed by the Au-C σ-bonding (with the η1-type coordination) between the ethynylphenanthrolines and the Au(I) phosphine unit. Re(I)-Au(I) heterometallics 3 and 4 have shown single phosphorescence from the 3MLCT excited state and this observation can be interpreted in terms of the efficient intramolecular energy transfer from the Au(I) unit to the Re(I) unit.  相似文献   

9.
Whereas {Ru(dppm)Cp*}2(μ-CCCC) (2) is the only product formed by deprotonation of [{Ru(dppm)Cp*}2{μ(CCHCHC)}]+ with dbu, a mixture of 2 with Ru{CCCHCH(PPh2)2[RuCp*]}(dppm)Cp* (3) and {Cp*Ru(PPh2CHCCH-)}2 (4) is obtained with KOBut. A similar reaction with [{Ru(dppm)Cp*}2{μ(CCMeCMeC)}]+ (5) gave Ru{CCCMeCH(PPh2)2[RuCp*]}(dppm)Cp* (6). X-ray structures of 4, 5 and 6 confirm the presence of the 1-ruthena-2,4-diphosphabicyclo[1.1.1]pentane moiety, which is likely formed by an intramolecular attack of the deprotonated dppm ligand on C(1) of the vinylidene ligand. Protonation of {Ru(dppe)Cp*}2(μ-CCCC) (8-Ru) regenerates its precursor [{Ru(dppe)Cp*}2{μ(CCHCHC)}]2+ (7-Ru). Ready oxidation of the bis(vinylidene) complex affords the cationic carbonyl [Ru(CO)(dppe)Cp*]PF6 (9) (X-ray structure).  相似文献   

10.
Self-assembly of a novel class of bis-imine-cyclometalated macrocycles [(CpIr)2(Ph-NC-Ph-CN-Ph)]2(4,4′-bipyridine)2·(OTf)4 (3a) and [(CpIr)2(Me-NC-Ph-CN-Me)]2(4,4′-bipyridine)2·(OTf)4 (3b) was directed by double-site C-H activations of aromatic bis-imine substrates. Two synthetic routes were established, using either (i) binuclear cyclometalated complexes (CpIr)2L1Cl2 (1a) and (CpIr)2L2Cl2 (1b) or (ii)4,4′-bipyridine(bpy)-bridged complex (CpIrCl2)2(bpy) (2) as starting materials. All the products were characterized by IR, 1H NMR and EA. Isomers were found in macrocyclic complexes, which were thermodynamically stable from reversible transformation in days. Highly robust structure of the cyclometalated macrocycles was indicated by the existence of stable isomer pairs. One isomer of 3b was determined by single-crystal X-ray diffraction. It was a rare case for half-sandwich metallosupramolecular macrocycles that weak interactions between macrocycles and OTf ions were fully captured in detail, and were demonstrated to be essential for the maintenance of tunnel structures of macrocycles in crystal packing.  相似文献   

11.
12.
Reactions between 1,1′-(Me3SiCC)2Rc′ [Rc′ = ruthenocen-1,1′-diyl, Ru(η-C5H4-)2] and RuCl(PP)Cp′ in the presence of KF gave 1,1′-{Cp(PP)RuCC}2Rc′ [Cp′ = Cp, PP = PPh31, P(m-tol)32, dppe 3, dppf 4; Cp′ = Cp, PP = dppe 5]. Compounds 1 and 2 react with tcne to give two diastereomers a/b of the allylic (vinylcarbene) complexes 6 and 7, while methylation of 5 gave the bis-vinylidene [1,1′-{Cp(dppe)RuCCMe}2Rc′](BPh4)2 (8). The X-ray structures of 4, 6b and 8 have been determined. Cyclic voltammograms indicate that there is some electronic communication between the ruthenium end-groups through the Rc′ centre.  相似文献   

13.
Ligand effects on the catalytic activity [and norbornene (NBE) incorporation] for both ethylene polymerization and ethylene/NBE copolymerization using half-titanocenes (titanium half-sandwich complexes) containing ketimide ligand of type Cp′TiCl2[NC(R1)R2] [Cp′ = Cp (1), C5Me5 (Cp, 2); R1,R2 = tBu,tBu (a), tBu,Ph (b), Ph,Ph (c)]-methylaluminoxane (MAO) catalyst systems have been investigated. CpTiCl2[NC(tBu)Ph] (1b) CpTiCl2(NCPh2) (1c), and CpTiCl2(NCPh2) (2c) were prepared and identified; the structure of CpTiCl2(NCPh2) (2c) was determined by X-ray crystallography. The catalytic activity for ethylene polymerization increased in the order: 1a > 1b > 1c, suggesting that an electronic nature of the ketimide ligand affects the activity. However, molecular weight distributions for resultant (co)polymers prepared by 1b,c and by 2c-MAO catalyst systems were bi- or multi-modal, suggesting that the ketimide substituent plays a key role in order for these (co)polymerizations to proceed with single catalytically-active species. CpTiCl2(NCtBu2) (1a) exhibited both remarkable catalytic activity and efficient NBE incorporation for ethylene/NBE copolymerization.  相似文献   

14.
Reaction of P2Ph4 with the diyne-diol complex [{Co2(CO)6}2(μ-η2:μ-η2-HOCH2CCCCCH2OH)] in toluene at 65 °C gives [{Co2(μ-P2Ph4)(CO)4}{Co2(CO)6}(μ-η2:μ-η2-HOCH2CCCCCH2OH)] (1). Thermolysis of 1 at 95 °C leads to [{Co2(CO)5}2(μ-P2Ph4)(μ-η2:μ-η2-HOCH2CCCCCH2OH)](2) and (μ2-PPh2)(μ2-CO)(CO)7] (3). The structures of 1-3 have been established by X-ray crystallography. In 1, a pseudoequatorial P2Ph4 ligand bridges the cobalt-cobalt bond of a Co2(CC)(CO)4 unit. By contrast, in isomeric 2, a pseudoaxial P2Ph4 ligand spans two Co2(CC)(CO)5 units, a new coordination mode for [{Co2(CO)5L}2(μ-η2:μ-η2-diyne)] complexes. Complex 3 arises from dehydration-cyclocarbonylation of the diyne-diol in 1 to give a 2(5H)-furanone, a process that has not been previously reported. Reaction of HOCH2CCCCCH2OH with [Co2(μ-PPh2)2(CO)6] at 80 °C in toluene gave [Co3(μ-PPh2)3(CO)6], [Co2(CO)6(μ-η2-HOCH2CCCCCH2OH)] and [Co2{μ-η4-PPh2C(CCCH2OH)C(CH2OH)CO}(μ-PPh2)(CO)4] (4). The regiochemistry of 4 was confirmed by X-ray crystallography.  相似文献   

15.
The preparation of several ruthenium complexes containing cyanocarbon anions is reported. Deprotonation (KOBut) of [Ru(NCCH2CN)(PPh3)2Cp]PF6 (1) gives Ru{NCCH(CN)}(PPh3)2Cp (2), which adds a second [Ru(PPh3)2Cp]+ unit to give [{Ru(PPh3)2Cp}2(μ-NCCHCN)]+ (3). Attempted deprotonation of the latter to give the μ-NCCCN complex was unsuccessful. Similar chemistry with tricyanomethanide anion gives Ru{NCC(CN)2}(PPh3)2Cp (4) and [{Ru(PPh3)2Cp}2{μ-NCC(CN)CN}]PF6 (5), and with pentacyanopropenide, Ru{NCC(CN)C(CN)C(CN)2}(PPh3)2Cp (6) and [{Ru(PPh3)2Cp}2{μ-NCC(CN)C(CN)C(CN)CN}]PF6 (7). The Ru(dppe)Cp* analogues of 6 and 7 (8 and 9) were also prepared. Thermolysis of 6 (refluxing toluene, 12 h) results in loss of PPh3 and formation of the binuclear cyclic complex {Ru(PPh3)Cp[μ-NC{C(CN)C(CN)2}CN]}2 (10). The solid-state structures of 2-4 and 8-10 have been determined and the nature of the isomers shown to be present in solutions of the binuclear cations 7 and 9 by NMR studies has been probed using Hartree-Fock and density functional theory.  相似文献   

16.
Reactions of phenylethynyl lithium with substituted cyclopentenones gave the corresponding pendant phenylethynyl substituted cyclopentadienes. Subsequent deprotonation and transmetallation with TiCl4·2THF, ZrCl4, and CpZrCl3 yielded the alkyne-functionalized metallocene complexes [C5Me4(CCPh)]2MCl2 [M = Ti (1), Zr (2)], Cp[C5Me4(CCPh)]ZrCl2 (3), and Cp[C5H2R′2(CCPh)]ZrCl2 [R′ = Me (4), Ph (5)]. These complexes were fully characterized by 1H NMR, 13C NMR, MS spectra, and elemental analysis. The molecular structure of 2 was determined by single crystal X-ray diffraction analysis. Ethylene polymerization was studied with these complexes in the presence of methylaluminoxane (MAO).  相似文献   

17.
The reactions of tri(bis(ethyl)amino)phosphorus ylide (Et2N)3PCH2 with cyclopentadienyl (Cp) metal (V) tetrachloride CpMCl4 (M = Nb 1; Ta 3) and pentamethylcycopentadienyl (Cp) metal (V) tetrachloride CpMCl4 (M = Nb 2; Ta 4) were investigated. The hexa-coordinate ylide adducts complexes 5 (CpNbCl4(H2CP(NEt2)3)), 6 (CpNbCl4(H2CP(NEt2)3)) and 8 (CpTaCl4(H2CP(NEt2)3)) with pseudo-octahedral geometry were structurally analyzed with X-ray diffraction. Compound 4 (CpTaCl4) reacted with three molar equivalent of phosphorus ylide to form one ionic complex 9 ([H3C-P(NEt2)3][CpTaCl5]) which was also structurally analyzed with X-ray diffraction. The possible formation mechanism of compound 9 has been discussed.  相似文献   

18.
The compounds Ru(CCCCFc)(PP)Cp [PP = dppe (1), dppm (2)], have been obtained from reactions between RuCl(PP)Cp and FcCCCCSiMe3 in the presence of KF (1) or HCCCCFc and K[PF6] (2), both with added dbu. The dppe complex reacts with Co2(CO)6(L2) [L2 = (CO)2, dppm] to give 3, 4 in which the Co2(CO)4(L2) group is attached to the outer CC triple bond. The PPh3 analogue of 3 (5) has also been characterised. In contrast, tetracyanoethene reacts to give two isomeric complexes 6 and 7, in which the cyano-olefin has added to either CC triple bond. The reaction of RuCl(dppe)Cp with HCCCCFc, carried out in a thf/NEt3 mixture in the presence of Na[BPh4], gave [Ru{CCC(NEt3)CHFc}(dppe)Cp]BPh4 (8), probably formed by addition of the amine to an (unobserved) intermediate butatrienylidene [Ru(CCCCHFc)(dppe)Cp]+. The reaction of I2 with 8 proceeds via an unusual migration of the alkynyl group to the Cp ring to give [RuI(dppe){η-C5H4CCC(NEt3)CHFc}]I3 (9). Single-crystal X-ray structural determinations of 1, 2 and 4-9 are reported.  相似文献   

19.
Two new 4f-3d heterometallic coordination polymers, [Gd2IIICoII(pydc)3(ox)(H2O)4)·2H2O] (1) and [DyIIICuII(pydc)2(ox)1/2(H2O)2·H2O] (2) (pydc = pyridine-2,5-dicarboxylate anion, ox = oxalate dianion) were successfully synthesized under hydrothermal condition. Structure and magnetism of the two coordination polymers were characterized by single crystal X-ray diffraction and Quantum Design (MPMS) SQUID magnetometer. In both compounds, metal centers were connected by double ligand bridges. In 1 the gadolinium ions were linked in sheets by OCO ligand bridges and these sheets were connected by separated cobalt coordination spheres to generate the overall 2-D structure. In 2 the dysprosium centers were constructed into one dimensional chain by OCO bridges from pydc ligand bridges and these chains were linked by oxalate bridges to form sheets and different sheets were connected by copper coordination planes. The copper centers in 2 were linked in chain by elongated OCO brides and the chains were connected by hydrogen bond to generate 3-D structure. Magnetic properties of the two complexes were investigated by variable temperature magnetic susceptibility. The magnetic data suggest that overall antiferromagnetic interactions are present in the two compounds.  相似文献   

20.
Reactions of Ru(CCPh)(PPh3)2Cp with (NC)2CCR1R2 (R1 = H, R2 = CCSiPri38; R1 = R2 = CCPh 9) have given η3-butadienyl complexes Ru{η3-C[C(CN)2]CPhCR1R2}(PPh3)Cp (11, 12), respectively, by formal [2 + 2]-cycloaddition of the alkynyl and alkene, followed by ring-opening of the resulting cyclobutenyl (not detected) and displacement of a PPh3 ligand. Deprotection (tbaf) of 11 and subsequent reactions with RuCl(dppe)Cp and AuCl(PPh3) afforded binuclear derivatives Ru{η3-C[C(CN)2]CPhCHCC[MLn]}(PPh3)Cp [MLn = Ru(dppe)Cp 19, Au(PPh3) 20]. Reactions between 8 and Ru(CCCCR)(PP)Cp [PP = (PPh3)2, R = Ph, SiMe3, SiPri3; PP = dppe, R = Ph] gave η1-dienynyl complexes Ru{CCC[C(CN)2]CRCH[CC(SiPri3)]}(PP)Cp (15-18), respectively, in reactions not involving phosphine ligand displacement. The phthalodinitrile C6H(CCSiMe3)(CN)2(NH2)(SiMe3) 10 was obtained serendipitously from (Me3SiCC)2CO and CH2(CN)2, as shown by an XRD structure determination. The XRD structures of precursor 7 and adducts 11, 12 and 17 are also reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号