首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Eight ionic organotin compounds [R2SnCl2(2-quin)](HNEt3)+ have been synthesized by reactions of 2-quinH with R2SnCl2 (R = PhCH21, 2-Cl-C6H4CH22, 4-Cl-C6H4CH23, 2-F-C6H4CH24, 4-F-C6H4CH25, 4-CN-C6H4CH26, Ph 7, 2,4-Cl2-C6H3CH28) in the presence of organic base NEt3, and their structures have been characterized by elemental analysis, IR and multinuclear NMR (1H, 13C, 119Sn) spectroscopies. The structure of [(2,4-Cl2-C6H3CH2)2SnCl2(2-quin)](NEt3)+ (8) has been determined by X-ray diffraction study. Studies show that compound 8 has a monomeric structure with the central tin atom six-coordinate in a distorted octahedral configuration and the nitrogen atoms of the 2-quin ligands are coordinating to the tin atom in all the eight compounds.  相似文献   

2.
Bis(p-substituted benzoylmethyl)tellurium dibromides, (p-YC6H4COCH2)2TeBr2, (Y=H (1a), Me (1b), MeO (1c)) can be prepared either by direct insertion of elemental Te across CRf-Br bonds (where CRf refers to α-carbon of a functionalized organic moiety) or by the oxidative addition of bromine to (p-YC6H4COCH2)2Te (Y=H (2a), Me (2b), MeO (2c)). Bis(p-substituted benzoylmethyl)tellurium dichlorides, (p-YC6H4COCH2)2TeCl2 (Y=H (3a), Me (3b), MeO (3c)), are prepared by the reaction of the bis(p-substituted benzoylmethyl)tellurides 2a-c with SO2Cl2, whereas the corresponding diiodides (p-YC6H4COCH2)2TeI2 (Y=H (4a), Me (4b), MeO (4c)) can be obtained by the metathetical reaction of 1a-c with KI, or alternatively, by the oxidative addition of iodine to 2a-c. The reaction of 2a-c with allyl bromide affords the diorganotellurium dibromides 1a-c, rather than the expected triorganotelluronium bromides. Compounds 1-4 were characterized by elemental analyses, IR spectroscopy, 1H, 13C and 125Te NMR spectroscopy (solution and solid-state) and in case of 1c also by X-ray crystallography. (p-MeOC6H4COCH2)2TeBr2 (1c) provides, a rare example, among organotellurium compounds, of a supramolecular architecture, where C-H-O hydrogen bonds appear to be the non-covalent intermolecular associative force that dominates the crystal packing.  相似文献   

3.
NMR study of the reactivity of multifunctional ligand cis,cis-C6H9(NHCH2C6H4-o-PPh2)3 (1) with GaMe3 and Zr(NMe2)4 was carried out, yielding [cis,cis-(κN-NHCH2C6H4-o-PPh2)(κN-NCH2C6H4-o-PPh2)2C6H9]GaMe (2) and [cis,cis-(NCH2C6H4-o-PPh2)3C6H9]Ga2Me3 (3), and [cis,cis-(NCH2C6H4-o-PPh2)3C6H9]Zr(NMe2) (4), respectively. The spectral properties of 2 and 3 are very similar to that observed for the equivalent aluminum species already reported, but form at a much slower rate which allows for the observation of a GaMe31 adduct. Species 4 undergoes coordination/displacement of one of the phosphine arms, which was observed using both NMR spectroscopy and DFT analyses.  相似文献   

4.
Reactions of [Ti(OPri)4] with various oximes, in anhydrous refluxing benzene yielded complexes of the type [Ti{OPri}4−n{L}n], where, n = 1-4 and LH = (CH3)2CNOH (1-4), C9H16CNOH (5-8) and C9H18CNOH (9-12). The compounds were characterized by elemental analyses, molecular weight measurements, FAB-mass, FT-IR and NMR (1H, 13C{1H}) spectral studies. The FAB-mass spectra of mono- (1), and di- (2), (6), (10) substituted products indicate their dimeric nature and that of tri- (3) and tetra- (4), (8) substituted derivatives suggest their monomeric nature. Crystal and molecular structure of [Ti{ONC10H16}4·2CH2Cl2] (8A) suggests that the oximato ligands bind the metal in a dihapto η2-(N, O) manner, leading to the formation of an eight coordinated species. Thermogravimetric curves of (3), (6) and (10) exhibit multi-step decomposition with the formation of TiO2 as the final product in each case, at 900 °C. Low temperature (∼600 °C) sol-gel transformations of (2), (3), (4), (6), (7) and (8) yielded nano-sized titania (a), (b), (c), (d), (e) and (f), respectively. Formation of anatase phase in all the titania samples was confirmed by powder XRD patterns, FT-IR and Raman spectroscopy. SEM images of (a), (b), (c), (d), (e) and (f) exhibit formation of nano-grains with agglomer like surface morphologies. Compositions of all the titania samples were investigated by EDX analyses. The absorption spectra of the two representative samples, (a) and (f) indicate an energy band gap of 3.17 eV and 3.75 eV, respectively.  相似文献   

5.
The organo-tin compounds, Me2Sn(C5H4R-1)2 (R = Me (1), Pri (2), But (3), SiMe3 (4)) and Me2Sn(C5Me4R-1)2 (R = H (5), SiMe3 (6)), were prepared by the reaction of Me2SnCl2 with the lithium or sodium derivative of the corresponding cyclopentadiene. Compounds 1-6 have been characterized by multinuclear NMR spectroscopy (1H, 13C, 119Sn). In addition the molecular structures of 5 and 6 were determined by single crystal X-ray diffraction studies. The transmetalation reaction of 1-6 with ZrCl4 or [NbCl4(THF)2] gave the corresponding metallocene complexes in high yields.  相似文献   

6.
Reaction of 2-benzoylpyridine thiosemicarbazone (H2Bz4DH, HL1) and its N(4)-methyl (H2Bz4Me, HL2) and N(4)-phenyl (H2Bz4Ph, HL3) derivatives with SnCl4 and diphenyltin dichloride (Ph2SnCl2) gave [Sn(L1)Cl3] (1), [Sn(L1)PhCl2] (2), [Sn(L2)Cl3] (3), (4) [Sn(L3)PhCl2] (5) and [Sn(L3)Ph2Cl] (6). Infrared and 1H, 13C and 119Sn NMR spectra of 1-3, 5 and 6 are compatible with the presence of an anionic ligand attached to the metal through the Npy-N-S chelating system and formation of hexacoordinated tin complexes. The crystal structures of 1-3, 5 and 6 show that the geometry around the metal is a distorted octahedron formed by the thiosemicarbazone and either chlorides or chlorides and phenyl groups. The crystal structure of 4 reveals the presence of and trans [Ph2SnCl4]2−.  相似文献   

7.
Eight diorganotin(IV) complexes of salicylaldehyde isonicotinylhydrazone (H2SalN) R2Sn(SalN) R = t-Bu 1, Ph 2, PhCH23, o-ClC6H4CH24, p-ClC6H4CH25,m-ClC6H4CH26,o-FPhCH27, p-FC6H4CH28 were prepared. All complexes 1-8 have been characterized by elemental, IR, 1H, 13C and 119Sn NMR analyses. The crystal structures of H2SalN and complex 1 were determined by X-ray crystallography diffraction analyses. Studies show that H2SalN is a tridentate planar ligand. For complex 1, the tin atom lies in this plane and forms a five- and six-membered chelate ring with the tridentate ligand. A comparison of the IR spectra of the ligand with those of the corresponding complexes, reveals that the disappearance of the bands assigned to carbonyl unambiguously confirms that the ligand coordinate with the tin in the enol form.  相似文献   

8.
The cleavage of the Se-Se bond in [2-(Me2NCH2)C6H4]2Se2 (1) was achieved by treatment with SO2Cl2 (1:1 molar ratio) or elemental halogens to yield [2-(Me2NCH2)C6H4]SeX [X = Cl (2), Br (3), I (4)]. Oxidation of 1 with SO2Cl2 (1:3 molar ratio) gave [2-(Me2NCH2)C6H4]SeCl3 (5). [2-(Me2NCH2)C6H4]SeS(S)CNR2 [R = Me (6), Et (7)] were prepared by reacting [2-(Me2NCH2)C6H4]SeBr with Na[S2CNR2] · nH2O (R = Me, n = 2; R = Et, n = 3). The reaction of 3 with K[(SPMe2)(SPPh2)N] resulted in isolation of [2-(Me2NCH2)C6H4]Se-S-PMe2N-PPh2S (8). The compounds were characterized by solution NMR spectroscopy (1H, 13C, 31P, 77Se, 2D experiments). The solid-state molecular structures of 2, 4-8 were established by single crystal X-ray diffraction. All compounds are monomeric, with the N atom of the pendant CH2NMe2 arm involved in a three-center-four-electron N?Se-X (X = halogen, S) bond. This results in a T-shaped coordination geometry for the Se(II) atom in 2, 4, 6-8. In 5, the Se(IV) atom achieves a square pyramidal coordination in the mononuclear unit. Loosely connected dimers are formed through intermolecular Se?Cl interactions (3.40 Å); the overall coordination geometry being distorted octahedral. In all compounds hydrogen bonds involving halide or sulfur atoms generate supramolecular associations in crystals.  相似文献   

9.
Two types of diorganotin(IV) complexes {[R2Sn(O2CC4H3N2)]2O}2 (R = n-octyl 1, 2-ClC6H4CH23, 2-FC6H4CH25, 4-FC6H4CH27) and R2Sn(O2CC4H3N2)2 (R = n-octyl 2, 2-ClC6H4CH24, 2-FC6H4CH26, 4-FC6H4CH28) were prepared by reactions of diorganotin oxide with 2-pyrazinecarboxylic acid. The complexes 1-8 are characterized by elemental analysis, IR and NMR (1H, 13C, 119Sn) spectroscopies. The complexes {[(n-C8H17)2Sn(O2CC4H3N2)]2O}2 (1) and (n-C8H17)2Sn(O2CC4H3N2)2 (2) are also determined by X-ray single crystal diffraction, which reveal that the endo-cyclic tin atom of complex 1, is seven-coordinate, and the exo-cyclic tin atom is hexa-coordinated geometry, while the complex 2 is seven-coordinated geometry. The nitrogen atom of the aromatic ring participates in the interactions with the Sn atom.  相似文献   

10.
The syntheses and structures of a series of new lanthanide complexes supported by a chelating diamide ligand N,N′-bis(trimethylsilyl)-o-phenylenediamine are described. Anhydrous LnCl3 reacts with Li2[o-(Me3SiN)2C6H4], followed by treatment of NaC5H4Me in 1:1:2 molar ratio to afford the corresponding anionic complexes: {[o-(Me3SiN)2C6H4]Ln(MeC5H4)2}{Li(DME)3} [Ln = Yb (1), Sm (2), Nd(3)] in high yield. These complexes were characterized by elemental analysis, IR and 1H NMR. The molecular structures of 1 and 2 were further determined by X-ray diffraction techniques to be an ion-pair complex composed by an anion [o-(Me3SiN)2C6H4]Ln(MeC5H4)2] and a cation [Li(DME)3]. Complexes 1-3 showed high catalytic activity for the polymerization of methyl methacrylate (MMA) at r.t., giving the syndiotactic-rich polymers with relatively narrow molecular weight distributions (Mw/Mn = 1.64-1.82).  相似文献   

11.
A series of diorganotin(IV) and triorganotin(IV) compounds of the type [R2Sn(pca)2ClSnR3]2 (RPhCH21, 2-ClC6H4CH22, 2-FC6H4CH23, 4-FC6H4CH24, 4-CNC6H4CH25, 4-ClC6H4CH26, 2,4-Cl2C6H3CH27; Hpca2-methylpyrazine-5-acid), [(nBu)3Sn(pca)]8, [(CH3)2Cl2Sn(pca)Sn(CH3)2(pca)]9, {[(nBu)2Sn(pca)]2O}210 and {[Ph2Sn(pca)]3O2[Ph2Sn(OCH3)]} 11 have been obtained by reactions of 2-methylpyrazine-5-acid with triorganotin(IV) chloride, diorganotin(IV) dichloride, and diorganotin(IV) oxide. All compounds were characterized by elemental, IR, and NMR spectra analyses. The crystal structure of compounds 1, 8-11 were determined by X-ray single crystal diffraction, which revealed that compound 1 was tetranuclear macrocyclic structures with seven-coordinate and five-coordinate tin atoms, compounds 8 and 9 were polymeric chain structures with five-coordinate and seven-coordinate tin atoms, compounds 10 and 11 were monomeric structures with six-coordinate and five-coordinate tin atoms.  相似文献   

12.
The reaction of the labile compound [Re2(CO)8(CH3CN)2] with 2,3-bis(2-pyridyl)pyrazine in dichloromethane solution at reflux temperature afforded the structural dirhenium isomers [Re2(CO)8(C14H10N4)] (1 and 2), and the complex [Re2(CO)8(C14H10N4)Re2(CO)8] (3). In 1, the ligand is σ,σ′-N,N′-coordinated to a Re(CO)3 fragment through pyridine and pyrazine to form a five-membered chelate ring. A seven-membered ring is obtained for isomer 2 by N-coordination of the 2-pyridyl groups while the pyrazine ring remains uncoordinated. For 2, isomers 2a and 2b are found in a dynamic equilibrium ratio [2a]/[2b]  =  7 in solution, detected by 1H NMR (−50 °C, CD3COCD3), coalescence being observed above room temperature. The ligand in 3 behaves as an 8e-donor bridge bonding two Re(CO)3 fragments through two (σ,σ′-N,N′) interactions. When the reaction was carried out in refluxing tetrahydrofuran, complex [Re2(CO)6(C14H10N4)2] (4) was obtained in addition to compounds 1-3. The dinuclear rhenium derivative 4 contains two units of the organic ligand σ,σ′-N,N′-coordinated in a chelate form to each rhenium core. The X-ray crystal structures for 1 and 3 are reported.  相似文献   

13.
Reactions of Mo(II)-tetraphosphine complex [MoCl24-P4)] (2; P4 = meso-o-C6H4(PPhCH2CH2PPh2)2) with a series of small molecules have been investigated. Thus, treatment of 2 with alkynes RCCR′ (R = Ph, R′ = H; R = p-tolyl, R′ = H; R = Me, R′ = Ph) in benzene or toluene gave neutral mono(alkyne) complexes [MoCl2(RCCR′)(κ3-P4)] containing tridentate P4 ligand, which were converted to cationic complexes [MoCl(RCCR′)(κ4-P4)]Cl having tetradentate P4 ligand upon dissolution into CDCl3 or CD2Cl2. The latter complexes were available directly from the reactions of 2 with the alkynes in CH2Cl2. On the other hand, treatment of 2 with 1 equiv. of XyNC (Xy = 2,6-Me2C6H3) afforded a seven-coordinate mono(isocyanide) complex [MoCl2(XyNC)(κ4-P4)] (7), which reacted further with XyNC to give a cationic bis(isocyanide) complex [MoCl(XyNC)24-P4)]Cl (8). From the reaction of 2 with CO, a mono(carbonyl) complex [MoCl2(CO)(κ4-P4)] (9) was obtained as a sole isolable product. Reaction of 9 with XyNC afforded [MoCl(CO)(XyNC)(κ4-P4)]Cl (10a) having a pentagonal-bipyramidal geometry with axial CO and XyNC ligands, whereas that of 7 with CO resulted in the formation of a mixture of 10a and its isomer 10b containing axial CO and Cl ligands. Structures of 7 and 9 as well as [MoCl(XyNC)24-P4)][PF6](8′) and [MoCl(CO)(XyNC)(κ4-P4)][PF6] (10a′) derived by the anion metathesis from 8 and 10a, respectively, were determined in detail by the X-ray crystallography.  相似文献   

14.
A set of C,N-chelated organotin(IV) ferrocenecarboxylates, [LCN(n-Bu)Sn(O2CFc)2] (1), [(LCN)2Sn(O2CFc)2] (2), [LCN(n-Bu)Sn(O2CCH2Fc)2] (3), [LCN(n-Bu)Sn(O2CCH2CH2Fc)2] (4), [LCN(n-Bu)Sn(O2CCHCHFc)2] (5), [LCN(n-Bu)Sn(O2CfcPPh2)2] (6), [(LCN)2Sn(O2CfcPPh2)2] (7), and [LCN(n-Bu)2Sn(O2CFc)] (8) (LCN = 2-(N,N-dimethylaminomethyl)phenyl, Fc = ferrocenyl and fc = ferrocene-1,1′-diyl) has been synthesized by metathesis of the respective organotin(IV) halides and carboxylate potassium salts and characterized by multinuclear NMR and IR spectroscopy. The spectral data indicated that the tin atoms in diorganotin(IV) dicarboxylates bearing one C,N-chelating ligand (1 and 3-6) are seven-coordinated with a distorted pentagonal bipyramidal environment around the tin constituted by the n-butyl group, the chelating LCN ligand and bidentate carboxylate. Compounds 2 and 7 possessing two chelating LCN ligands comprise octahedrally coordinated tin atoms and monodentate carboxylate donors, whereas compound 8 assumes a distorted trigonal bipyramidal geometry around tin with the carboxylate binding in unidentate fashion. The solid state structures determined for 1⋅C6D6 and 2 by single-crystal X-ray diffraction analysis are in agreement with spectroscopic data. Compounds 1, 3-5, and 8 were further studied by electrochemical methods. Whereas the oxidations of ferrocene units in bis(carboxylate) 2 and monocarboxylate 8 proceed in single steps, compound 1 undergoes two closely spaced one-electron redox waves due to two independently oxidized ferrocenyl groups. The spaced analogues of 2, compounds 3-5, again display only single waves corresponding to two-electron exchanged.  相似文献   

15.
Reactions of [Pt2(μ-Cl)2(C8H12OMe)2] (1) (C8H12OMe = 8-methoxy-cyclooct-4-ene-1-yl) with various anionic chalcogenolate ligands have been investigated. The reaction of 1 with Pb(Spy)2 (HSpy = pyridine-2-thiol) yielded a binuclear complex [Pt2(Spy)2(C8H12OMe)2] (2). A trinuclear complex [Pt3(Spy)4(C8H12OMe)2] (3) was isolated by a reaction between 2 and [Pt(Spy)2]n. The reaction of 1 with HSpy in the presence of NaOMe generated 2 and its demethylated oxo-bridged tetranuclear complex [Pt4(Spy)4(C8H12-O-C8H12)2] (4). Treatment of 1 with ammonium diisopropyldithiophosphate completely replaced C8H12OMe resulting in [Pt(S2P{OPri}2)2] (5), whereas non-rigid 5-membered chelating ligand, Me2NCH2CH2E, produced mononuclear complexes [Pt(ECH2CH2NMe2)(C8H12OMe)] (E = S (6), Se (7)). These complexes have been characterized by elemental analyses, NMR (1H, 13C{1H}, 195Pt{1H}) and absorption spectroscopy. Molecular structures of 2, 3, 4, 5 and 7 were established by single crystal X-ray diffraction analyses. Thermolysis of 2, 6 and 7 in HDA gave platinum nanoparticles.  相似文献   

16.
This work reports on the preparation of the complexes [PdCl2(Y1)2], [PdCl2(Y2)2] (Y1 = (p-tolyl)3PCHCOCH3 (1a); Y2 = Ph3PCHCO2CH2Ph (1b)), [Pd{CHP(C7H6)(p-tolyl)2COCH3}(μ-Cl)]2 (2a), [Pd{CHP(C6H4)Ph2CO2CH2Ph}(μ-Cl)]2 (2b), [Pd{CH{P(C7H6)(p-tolyl)2}COCH3}Cl(L)] (L = PPh3 (3a), P(p-tolyl)3 (4a)) and [Pd{CH{P(C6H4)Ph2}CO2CH2Ph}Cl(L)] (L = PPh3 (3b), P(p-tolyl)3 (4b)). Orthometallation and ylide C-coordination in complexes 2a4b are demonstrated by an X-ray diffraction study of 4a.  相似文献   

17.
Two types of di-n-butyltin(IV) complexes {[nBu2Sn(O2CR)]2O}2 · L 1-4 and nBu2Sn(O2CR)2Y 5-8 (when L=H2O, R=2-pyrazine 1; L=0, R=2-pyrimidylthiomethylene 2, 1-naphthoxymethylene 3; L=C6H6, R=2-naphthoxymethylene 4; when Y=H2O, R=2-pyrazine 5; Y=0, R=2-pyrimidylthiomethylene 6, 1-naphthoxymethylene 7, 2-naphthoxymethylene 8) have been prepared in 1:1 or 1:2 molar ratios by reactions of di-n-butyltin oxide with the heteroatomic (N, O or S) carboxylic acids. The complexes 1-8 are characterized by elemental, IR, 1H and 13C NMR spectra. And except for complexes 6 and 7, the complexes 1-5 and 8 are also characterized by X-ray crystallography diffraction analyses, which reveal that the tin atom of complex 5 is seven-coordinated, while the complexes 1-4 and 8 are all hexa-coordinated. The nitrogen atom of the aromatic ring in complexes 1 and 5 participates in the interactions with the Sn atom.  相似文献   

18.
The intramolecularly coordinated heteroleptic stannylene [4-t-Bu-2,6-{P(O)(O-i-Pr)2}2C6H2]SnCl serves as synthon for the synthesis of the ferrocenyl-bridged bis(diorganostannylene) [4-t-Bu-2,6-{P(O)(O-i-Pr)2}2C6H2SnC5H4]2Fe (1) which in turn reacts with W(CO)6 and Cr(CO)4(C7H8) to provide the corresponding transition metal complexes [4-t-Bu-2,6-{P(O)(O-i-Pr)2}2C6H2Sn{W(CO)5}C5H4]2Fe (2) and [4-t-Bu-2,6-{P(O)(O-i-Pr)2}2C6H2SnC5H4]2Fe · Cr(CO)4 (3), respectively. Reaction of compound 1 with sulphur and atmospheric moisture gave, under partial tin-carbon and oxygen-carbon bond cleavage, a tetranuclear organotin-oxothio cluster 5. All compounds were characterized by 1H, 13C, 31P, and 119Sn NMR, and IR spectroscopy, as well as by single-crystal X-ray diffraction analysis. Compounds 1 and 3 were also investigated by Mössbauer spectroscopy. Cyclovoltametric studies reveal the influence of the organostannyl moieties on the redox-behaviour of compounds 1-3 in comparison with unsubstituted ferrocene.  相似文献   

19.
[Cp4Fe4(CO)4] (1) reacts with p-BrC6H4Li and MeOH in sequence to afford the functionalized cluster [Cp3Fe4(CO)4(C5H4-p-C6H4Br)] (2), while the reaction of 2 with n-BuLi and MeOH produces [Cp2Fe4(CO)4(C5H4Bu)(C5H4-p-C6H4Br)] (3). The double cluster [Cp3Fe4(CO)4(C5H4)]2(p-C6H4) (4) has been prepared by treatment of [Cp4Fe4(CO)4] with p-C6H4Li2 and MeOH in sequence. The electrochemistry of 2 and 4, as well as the crystal structure of 4 have been investigated.  相似文献   

20.
Chiral “P-N-P” ligands, (C20H12O2)PN(R)PY2 [R = CHMe2, Y = C6H5 (1), OC6H5 (2), OC6H4-4-Me (3), OC6H4-4-OMe (4) or OC6H4-4-tBu (5)] bearing the axially chiral 1,1′-binaphthyl-2,2′-dioxy moiety have been synthesised. Palladium allyl chemistry of two of these chiral ligands (1 and 2) has been investigated. The structures of isomeric η3-allyl palladium complexes, (R′ = Me or Ph; Y = C6H5 or OC6H5) have been elucidated by high field two-dimensional NMR spectroscopy. The solid state structure of [Pd(η3-1,3-Ph2-C3H3){κ2-(racemic)-(C20H12O2)PN(CHMe2)PPh2}](PF6) has been determined by X-ray crystallography. Preliminary investigations show that the diphosphazanes, 1 and 2 function as efficient auxiliary ligands for catalytic allylic alkylation but give rise to only moderate levels of enantiomeric excess.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号