首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A series of cyclometalating platinum(II) complexes with substituted 9-arylcarbazolyl chromophores have been synthesized and characterized. These complexes are thermally stable and most of them have been characterized by X-ray crystallography. The phosphorescence emissions of the complexes are dominated by 3MLCT excited states. The excited state properties of these complexes can be modulated by varying the electronic characteristics of the cyclometalating ligands via substituent effects, thus allowing the emission to be tuned from bright green to yellow, orange and red light. The correlation between the functional properties of these metallophosphors and the results of density functional theory calculations was made. Because of the propensity of the electron-rich carbazolyl group to facilitate hole injection/transport, the presence of such moiety can increase the highest occupied molecular orbital levels and improve the charge balance in the resulting complexes relative to the parent platinum(II) phosphor with 2-phenylpyridine ligand. The solution-processed electrophosphorescent organic light-emitting diodes doped with these platinum-based phosphors have been fabricated which showed a maximum external quantum efficiency of 2.77% for the best device, corresponding to a power efficiency of 3.48 lm/W and a luminance efficiency of 8.49 cd/A. The present work enables the rational design of platinum-carbazolyl electrophosphors by synthetically tailoring the structure of carbazolylpyridine ring that can permit good color-tuning versatility suitable for multi-color display technology.  相似文献   

2.
A new class of luminescent and thermally stable mononuclear group 10 platinum(II) and palladium(II) acetylides trans-[Pt(PR3)2(L)2] (R = Bu, Et) and trans-[Pd(PBu3)2(L)2] (LH = 3-(N-carbazolyl)-1-propyne) have been successfully synthesized and characterized. The structural properties of these discrete metal complexes have been studied by X-ray crystallography. We report their optical absorption and photoluminescence spectra and interpret the results in terms of the nature of the metal center and the type of phosphines used. Our investigations indicate that they display heavy metal-enhanced phosphorescence bands at 77 K and we find that the platinum complexes afford more intense triplet emission than that for the palladium congener, consistent with the stronger heavy-atom effect of the third row element than the second row neighbor of the same group.  相似文献   

3.
A novel polymerizable 8-hydroxyquinoline aluminum (Alq3) complex monomer and its copolymers (Alq3/N-vinylcarbazole (NVK)) with different mole fractions of Alq3 in feed were designed and synthesized. The structure of the Alq3-complex monomer was characterized by 1H NMR, FT-IR and elemental analysis, and the bipolar copolymers with various desired Alq3 loading were characterized by 1H NMR, FT-IR, elemental analysis, and gel permeation chromatography (GPC). The results indicate that these copolymers have moderate molecular weight as well as good solubility in common organic solvent. Thermal properties measurement and analysis show that these copolymers possess excellent thermal stability and high glass transition temperature (Tg). The photophysics properties of the copolymers were studied by UV–vis and fluorescence spectra. Nearly monochromatic yellow–green emission from Alq3 was observed in high concentration solution and solid state, showing effective energy transfer characteristic. The results demonstrate that introduction of carbazole as hole-transporting and energy transfer group is a potential method to improve the luminescent performance of the Alq3-based polymers.  相似文献   

4.
The novel hexanuclear platinum–copper complex [Pt2Cu4(C6F5)4(CCtBu)4(acetone)2] (1) and the polynuclear derivative [PtCu2(C6F5)2(CCPh)2]x (2), which crystallises in acetone as [Pt2Cu4(C6F5)4(CCPh)4(acetone)4] (2)·(acetone)4, have been prepared using [cis-Pt(C6F5)2(THF)2] and the corresponding copper–acetylide [Cu(CCR)]x (molar ratio 1:2) as starting materials. Treatment of 1 and 2 with 2,2′-bipyridine (molar ratio Cu–bipy 1:1), afforded the new trinuclear derivatives [{cis-Pt(C6F5)2(μ-CCR)2}{Cu(bipy)}2] (R=tBu 3, Ph 4), in which the dianionic 3-platina-1,4-diyne acts as a didentate bridging ligand to two different cationic Cu(bipy) units through η2-side-on coordination of the alkynyl fragments. While similar treatment of 1 with dppe (Cu–dppe 1:1) yielded [{cis-Pt(C6F5)2(μ-CCtBu)2}{Cu(dppe)}2] (5), the analogous reaction of 2 with dppe afforded a mixture of complexes containing [Pt(C6F5)(CCPh)(dppe)] as the main platinum compound. The crystal structures of 1, (acetone)4, 3 and 4 and the luminescent behaviour of all complexes have been determined. A comparison of the photoluminescent spectra of 1 and 2 with those of the related platinum–silver species [PtAg2(C6F5)2(CCR)2]x and the monomeric [cis-Pt(C6F5)2(CCR)2]2− suggests the presence of emitting states bearing a large cluster [PtM2]x-to-ligand (alkynide) charge transfer (CLCT).  相似文献   

5.
The complexes trans-[Os(CCPh)Cl(dppe)2] (1), trans-[Os(4-CCC6H4CCPh)Cl(dppe)2] (2), and 1,3,5-{trans-[OsCl(dppe)2(4-CCC6H4CC)]}3C6H3 (3) have been prepared. Cyclic voltammetric studies reveal a quasi-reversible oxidation process for each complex at 0.36–0.39 V (with respect to the ferrocene/ferrocenium couple at 0.56 V), assigned to the OsII/III couple. In situ oxidation of 1–3 using an optically transparent thin-layer electrochemical (OTTLE) cell affords the UV–Vis–NIR spectra of the corresponding cationic complexes 1+–3+; a low-energy band is observed in the near-IR region (11 000–14 000 cm−1) in each case, in contrast to the neutral complexes 1–3 which are optically transparent below 20 000 cm−1. Density functional theory calculations on the model compounds trans-[Os(CCPh)Cl(PH3)4] and trans-[Os(4-CCC6H4CCPh)Cl(PH3)4] have been used to rationalize the observed optical spectra and suggest that the low-energy bands in the spectra of the cationic complexes can be assigned to transitions involving orbitals delocalized over the metal, chloro and alkynyl ligands. These intense bands have potential utility in switching nonlinear optical response, of interest in optical technology.  相似文献   

6.
The carbonyl derivatized bis(alkyne) O=C(4-C6H4OCH2CCH)2 was converted into the imine derivatives RN=C(4-C6H4OCH2CCH)2 [R=OH, NHC(O)NH2, NHC6H3-2,4-(NO2)2] and into the 4-bromomethyl-1,3-dioxolane derivative BrCH2C2H3O2C(4-C6H4OCH2CCH)2. The alkyne units in these compounds react with [AuCl(SMe2)] in the presence of base to form the corresponding digold(I) diacetylide complexes, that exist as insoluble oligomers or polymers. They reacted with the diphosphines Ph2PZPPh2 [Z=CC, trans-HC=CH and (CH2)n, n=3–5] to give macrocyclic gold(I) complexes of the type [Au2(μ-LL)(μ-PP)], where LL is the diacetylide and PP the diphosphine ligand. The ability of these macrocyclic complexes to self-assemble to [2]catenanes has been studied. The ketone and imine derivatives do not form [2]catenanes because the orientation of the aryl groups is unfavorable, but the 1,3-dioxolane derivatives may catenate if the ring size is optimum.  相似文献   

7.
Four cyclometalated Pt(II) complexes, i.e., [(L2)PtCl] (1b), [(L3)PtCl] (1c), [(L2)PtCCC6H5] (2b) and [(L3)PtCCC6H5] (2c) (HL2 = 4-[p-(N-butyl-N-phenyl)anilino]-6-phenyl-2,2′-bipyridine and HL3 = 4-[p-(N,N′-dibutyl-N′-phenyl)phenylene-diamino]-phenyl-6-phenyl-2,2′-bipyridine), have been synthesized and verified by 1H NMR, 13C NMR and X-ray crystallography. Unlike previously reported complexes [(L1)PtCl] (1a) and [(L1)PtCCC6H5] (2a) (HL1 = 4,6-diphenyl-2,2′-bipyridine), intense and continuous absorption bands in the region of 300-500 nm with strong metal-to-ligand charge transfer (1MLCT) (dπ(Pt) → π(L)) transitions (ε ∼ 2 × 104 dm3 mol−1 cm−1) at 449-467 nm were observed in the UV-Vis absorption spectra of complexes 1b, 1c, 2b and 2c. Meanwhile, with the introduction of electron-donating arylamino groups in the ligands of 1a and 2a, complexes 1b and 2b display stronger phosphorescence in CH2Cl2 solutions at room temperature with bathochromically shifted emission maxima at 595 and 600 nm, relatively higher quantum yields of 0.11 and 0.26, and much longer lifetimes of 8.4 and 4.5 μs, respectively. An electrochromic film of 1b-based polymer was obtained on Pt or ITO electrode surface, which suggests an efficient oxidative polymerization behavior. An orange multilayer organic light-emitting diode with 1b as phosphorescent dopant was fabricated, achieving a maximum current efficiency of 11.3 cd A−1 and a maximum external efficiency of 5.7%. The luminescent properties of complexes 1c and 2c are dependent on pH value and solvent polarity, which is attributed to the protonation of arylamino units in the C^N^N cyclometalating ligands.  相似文献   

8.
The synthesis of the ruthenium σ-acetylides (η5-C5H5)L2Ru-CC-bipy (4a, L = PPh3; 4b, L2 = dppf; bipy = 2,2′-bipyridine-5-yl; dppf = 1,1′-bis(diphenylphosphino)ferrocene) is possible by the reaction of [(η5-C5H5)L2RuCl] (1) with 5-ethynyl-2,2′-bipyridine (2a) in the presence of NH4PF6 followed by deprotonation with DBU. Heterobimetallic Fc-CC-NCN-Pt-CC-R (10a, R = bipy; 10b, R = C5H4N-4; Fc = (η5-C5H5)(η5-C5H4)Fe; NCN = [1,4-C6H2(CH2NMe2)2-2,6]) is accessible by the metathesis of Fc-CC-NCN-PtCl (9) with lithium acetylides LiCC-R (2a, R = bipy; 2b, R = C5H4N-4).The complexation behavior of 4a and 4b was investigated.Treatment of these molecules with [MnBr(CO)5] (13) and {[Ti](μ-σ,π-CCSiMe3)2}MX (15a, MX = Cu(NCMe)PF6; 15b, MX = Cu(NCMe)BF4; 16, MX = AgOClO3; [Ti] = (η5-C5H4SiMe3)2Ti), respectively, gave the heteromultimetallic transition metal complexes (η5- C5H5)L2Ru-CC-bipy[Mn(CO)3Br] (14a: L = PPh3; 14b: L2 = dppf) and [(η5-C5H5)L2Ru-CC-bipy{[Ti](μ-σ,π-CCSiMe3)2}M]X (17a: L = PPh3, M = Cu, X = BF4; 17b: L2 = dppf, M = Cu, X = PF6; 18a: L = PPh3, M = Ag, X = ClO4; 18b: L2 = dppf, M = Ag, X = ClO4) in which the appropriate transition metals are bridged by carbon-rich connectivities.The solid-state structures of 4b, 10b, 12 and 17b are reported. The main structural feature of 10b is the square-planar-surrounded platinum(II) ion and its linear arrangement. In complex 12 the N-atom of the pendant pyridine unit coordinates to a [mer,trans-(NNN)RuCl2] (NNN = 2,6-bis-[(dimethylamino)methyl]pyridine) complex fragment, resulting in a distorted octahedral environment at the Ru(II) centre. In 4b a 1,1′-bis(diphenylphosphino)ferrocene building block is coordinated to a cyclopentadienylruthenium-σ-acetylide fragment. Heterotetrametallic 17b contains a (η5-C5H5)(dppf)Ru-CC-bipy unit, the bipyridine entity of which is chelate-bonded to [{[Ti](μ-σ,π-CCSiMe3)2}Cu]+. Within this arrangement copper(I) is tetra-coordinated and hence, possesses a pseudo-tetrahedral coordination sphere.The electrochemical behavior of 4, 10b, 12, 17 and 18 is discussed. As typical for these molecules, reversible oxidation processes are found for the iron(II) and ruthenium(II) ions. The attachment of copper(I) or silver(I) building blocks at the bipyridine moiety as given in complexes 17 and 18 complicates the oxidation of ruthenium and consequently the reduction of the group-11 metals is made more difficult, indicating an interaction over the organic bridging units.The above described complexes add to the so far only less investigated class of compounds of heteromultimetallic carbon-rich transition metal compounds.  相似文献   

9.
Two carbon-rich starburst gold(I) acetylide complexes [TEE][Au(PCy3)]4 (3, [TEE]H4=tetraethynylethene) and [TEB][Au(PCy3)]3 (6, [TEB]H3=1,3,5-triethynylbenzene) were prepared and their UV–vis absorption, emission and excitation spectra have been recorded. In fluid CH2Cl2 solutions, 3 exhibits prompt 1(ππ*) fluorescence with λ0–0 and λmax at 413 and 428 nm, respectively, while 6 displays 3(ππ*) phosphorescence with λ0–0 and λmax at 446 and 479 nm, respectively. The crystal structure of 3·CH2Cl2 has been determined.  相似文献   

10.
We present the dual-emissive dye containing heterogeneous organometallic units. The diad ligand composed of two diketonate moieties linked by fluorene was synthesized. By introducing boron and platinum elements, the emissive molecules were obtained. From optical measurements, it was confirmed that the boron and the platinum-containing diads showed the emissions from the charge transfer and the triplet π–π ligand centered transitions, respectively. Next, to observe these fluorescence and phosphorescence properties from the dye molecule, the diad composed of boron and platinum diketonates linked by the fluorene unit was prepared. Finally, the dual emission containing fluorescence from the boron complex and phosphorescence from the platinum complex was simultaneously observed.  相似文献   

11.
The synthesis, structure and spectroscopy of a series of luminescent orthometalated square planar platinum(II) complexes are reported. Reaction of K2PtCl4 with one mole equivalent of 2-phenylpyridine (ppyH) in 2-ethoxyethanol and water (1:1 ratio) resulted in the formation of chloro-bridged dimeric precursor [Pt2(μ-Cl)2(ppy)2], which on further reactions with various anionic one-, two- and three-atom ancillary ligands, having O/N/S donors, yielded mono- and bi-nuclear platinum(II) complexes. Platinum(III) complexes of composition [Pt2Cl2(μ-Epy)2(ppy)2] have been isolated with pyE (E = O or S) ligands. These complexes have been characterized by elemental analysis, NMR (1H, 31P, 195Pt) and absorption spectroscopy. The complexes [Pt2(μ-NN)2(ppy)2] (NN = pyrazole and 3,5-dimethylpyrazole); [Pt(SS)(ppy)] (SS = ethylxanthate and diisopropyldithiophosphate); [Pt2Cl2(μ-Epy)2(ppy)2] (Epy = 2-pyridinol {Opy} and 2-mercaptopyridine {Spy}) and [PtCl(ppy)(PhNC(Me)NHPh)] have been structurally characterized by X-ray crystallography.  相似文献   

12.
The electronic structures of carbazole, N-phenylcarbazole (NPC), cyanophenylcarbazole (CPC) and N-ethylcarbazole (NEC) have been calculated using the quantum chemical semi-empirical MINDO/3 method. In this paper, electronic ground states and first singlet excited states of the systems mentioned were investigated. It is observed that the excitation energy of carbazole based on the calculated difference in heats of formation agrees quite well with experimental data obtained from supersonic expansion studies. Calculated energy levels of molecular orbitals and their graphical forms are used qualitatively in elucidating the S0S1 excitation electronic origin red shifts observed in carbazole derivatives with respect to the electronic origin of the parent carbazole. It is noted that the red shifts are not just a result of the destabilization of the HOMO of carbazole but are also determined by the nature of the substituting moieties. It is also observed that the LUMO of CPC is not derived from the parent carbazole which partially explains the difference in electronic behaviour as compared with the other derivatives.  相似文献   

13.
The reactions of [M2Cl2(μ-Cl)2(PMe2Ph)2] with mercapto-o-carboranes in the presence of pyridine afforded mono-nuclear complexes of composition, [MCl(SCb°R)(py)(PMe2Ph)] (M = Pd or Pt; Cb° = o-C2B10H10; R = H or Ph). The treatment of [PdCl2(PEt3)2] with PhCb°SH yielded trans-[Pd(SCb°Ph)2(PEt3)2] (4) which when left in solution in the presence of pyridine gave another substitution product, [Pd(SCb°Ph)2(py)(PEt3)] (5). The structures of [PdCl(SCb°Ph)(py)(PMe2Ph)] (1), [Pd(SCb°Ph)2(PEt3)2] (4) and [Pd(SCboPh)2(py)(PEt3)] (5) were established unambiguously by X-ray crystallography. The palladium atom in these complexes adopts a distorted square-planar configuration with neutral donor atoms occupying the trans positions. Thermolysis of [PdCl(SCb°)(py)(PMe2Ph)] (2) in TOPO (trioctylphosphine oxide) at 200 °C gave nanocrystals of TOPO capped Pd4S which were characterized by XRD pattern and SEM.  相似文献   

14.
A new series of rigid-rod alkynylferrocenyl precursors with central fluoren-9-one bridge, 2-bromo-7-(2-ferrocenylethynyl)fluoren-9-one (1b), 2-trimethylsilylethynyl-7-(2-ferrocenylethynyl)fluoren-9-one (2) and 2-ethynyl-7-(2-ferrocenylethynyl)fluoren-9-one (3), have been prepared in moderate to good yields. The ferrocenylacetylene complex 3 can provide a direct access to novel heterometallic complexes, trans-[(η5-C5H5)Fe(η5-C5H4)CCRCCPt(PEt3)2Ph] (4), trans-[(η5-C5H5)Fe(η5-C5H4)CCRCCPt(PBu3)2CCRCC(η5-C5H4)Fe(η5-C5H5)] (5), [(η5-C5H5)Fe(η5-C5H4)CCRCCAu(PPh3)] (6) and [(η5-C5H5)Fe(η5-C5H4)CCRCCHgMe] (7) (R=fluoren-9-one-2,7-diyl), following the CuI-catalyzed dehydrohalogenation reactions with the appropriate metal chloride compounds. All the new complexes have been characterized by FTIR, 1H-NMR and UV–vis spectroscopies and fast atom bombardment mass spectrometry. The solid state molecular structures of 3, 5, 6 and 7 have been established by X-ray crystallography. The redox chemistry of these mixed-metal species has been investigated by cyclic voltammetry and oxidation of the ferrocenyl moiety is facilitated by the presence of the heavy metal centre and increased conjugation in the chain through the ethynyl and fluorenone linkage units.  相似文献   

15.
The synthesis and properties of heterobimetallic Ti-Cd complexes of type {[Ti](μ-η12-CCR)2}CdX2 ([Ti] = Ti(η5-C5H4SiMe3)2; R = SiMe3: 3a, X = Cl; 3b, X = Br; 3c, X = I; R = Fc: 3d, X = Br; Fc = Fe(η5-C5H4)(η5-C5H5) is reported. These compounds were accessible by treatment of [Ti](CCR)2 (1a, R = SiMe3; 1b, R = Fc) with the cadmium salts CdX2 (2a, X = Cl; 2b, X = Br; 2c, X = I) in a 1:1 M ratio in diethyl ether. Dissolving, for example, 3b in tetrahydrofuran afforded coordination polymer [Cd(μ-Br)2(thf)2]n (4) along with the tweezer molecule 1a. Treatment of 3b with two equiv of LiCCFc (5) gave {[Ti](μ-η12-CCSiMe3)2}Cd(CCFc)2 (6) which eliminated at ambient temperature the all-carbon buta-1,3-diyne FcCC-CCFc (7) producing 1a and elemental Cd. The same reaction behavior was observed, when 2b was reacted with 5. The thus obtained bis(alkynyl) cadmium complex Cd(CCFc)2 (8) is redox-active at low temperature producing 7 and Cd(0). When mercury halides HgX2 (9a, X = Cl; 9b, X = Br) are used, then the titanocene dihalides [Ti]X2 (10a, X = Cl; 10b, X = Br) together with Me3SiCC-CCSiMe3 (11) and Hg(0) were formed. Nevertheless, mercury acetylides were available by treatment of Hg(OAc)2 (12) with HCCFc (13) in a 1:2 M ratio. Thus obtained Hg(CCFc)2 (14) gave with [CuBr] (15) coordination polymer [{Hg(η2-CCFc)2}(Cu2(μ-Br)2]n (16), while with [AgPF6] oxidation of the ferrocenyl moieties took place affording dicationic [Hg(CCFc)2]2+ (18).The structures of 3b and 4 in the solid state are reported. Compound 3b shows the typical characteristics for heterobimetallic organometallic π-tweezer complexes with cadmium in a tetrahedral environment, while 4 corresponds to a one-dimensional coordination polymer in which the Cd(II) ions are linked in a edge-sharing fashion by bromide bridges in the pseudo-equatorial plane. The appropriate tetrahydrofuran molecules are completing the pseudo-octahedral coordination sphere at cadmium.The cyclic voltammogram of 14 is reported showing a single reversible redox event at E0 = 0.108 V with ΔEp = 76 mV indicating that there is no communication between the Fc termini along the mercury acetylide unit.  相似文献   

16.
The study of the reactivity of [Pt2M4(CCR)8] (M=Ag or cu; R=Ph or tBu) towards different neutral and anionic ligands is reported. This study reveals that reactions of the phenylacetylide derivatives [Pt2M4(CCPh)8] with anionic, X (X=Cl or Br) or neutral donors (CNtBu or py) in a molar ratio 1:4 (m/donor ratio 1:1) yield the trinuclear anionic (NBu4)2[{Pt(CCPh)4 (MX)2] (M=Ag or Cu, X =Cl or Br) or neutral [{Pt(CCPh04=sAGL)2] (L=CNtBu or py) complexes, respectively. The crystal structure of (NBu4)2[{Pt(CCPh)4}(CuBr)2](4) shows that the anion is formed by a dianionic Pt(CCPh)4 fragment and two neutral CuBr units joined through bridging alkynyl ligands. All the alkynyl groups are σ bonded to Pt and η2-coordinated to a Cu atom which have an approximately trigonal-planar geometry. By contrast, similar reactions with [Pt2M4(CCtBu)8] (molar ratio M/donor 1:1) afford hexanuclear dianionic (NBu4)2[Pt2M4(CCtBu)8X2] or neutral [Pt2Ag4(CCtBu08Py2]. Only by treatment with a large exces of Br (molar ratio M/Br 1:2) are the trinuclear complexes (NBu4)2[{Pt(CCtBu4 (MBr)2] (M=Ag, Cu) obtained. Attempted preparations of analogous complexes with phosphines (L′=PPh3 or PEt3) by reactions of [Pt2M4(CCR8] with L′ leads to displacement of alkynyl ligands from platinum and formation of neutral mononuclear complexes [trans-Pt(CCR)2L′2].  相似文献   

17.
In the search for light-addressable nanosized compounds we have synthesized 10 dinuclear homometallic trisbipyridyl complexes of linear structure with the general formula [M(bpy)3-BL-M(bpy)3]4+ [M = Ru(II) or Os(II); BL = polyphenylenes (2, 3, 4, or 5 units) or indenofluorene; bpy = 2,2'-bipyridine]. By using a "chemistry on the complex" approach, different sizes of rodlike systems have been obtained with a length of 19.8 and 32.5 A for the shortest and longest complex, respectively. For one of the ruthenium precursors, [Rubpy-ph2-Si(CH3)3][PF6]2, single crystals were obtained by recrystallization from methanol. Their photophysical and electrochemical properties are reported. All the compounds are luminescent both at room and low temperature with long excited-state lifetimes due to an extended delocalization. Nanosecond transient absorption showed that the lowest excited state involves the chelating unit attached to the bridging ligand. Electrochemical data indicated that the first reduction is at a slightly more positive potential than for the reference complexes [M(bpy)3]2+ (M = Ru, Os). This result confirms that the best acceptor is the bipyridine moiety connected to the conjugated spacers. The role of the tilt angle between the phenylene units, in the two series of complexes, for the ground and excited states is discussed.  相似文献   

18.
We report a combinational DFT and TD-DFT study of the electronic and optical properties of several tridentate cyclometalated mononuclear [Pt(C^N^N)(CCR)] (1-3), [Pt(C^N^N)(CCRCCH)] (4), and dinuclear [Pt(C^N^N)(CCRCC)Pt(C^N^N)] (5 (C2 symmetry) and 5′ (Cs symmetry)) platinum(II) complexes with σ-acetylide ligand bearing fluorene substituents, where HC^N^N = 6-aryl-2,2′-bipyridine, R = fluorene-2,7-diyl 1, 4, 5 and 5, R = 9,9-dimethylfluorene-2,7-diyl 2, R = 9,9-diethylfluorene-2,7-diyl 3. The structural and electronic properties of the ground- and lowest triplet state and the EA and IP values of the complexes are discussed. It is found that all of the lowest-lying absorptions are categorized as the LLCT combined with the MLCT transitions. The oscillator strengths of the lowest energy absorptions get a remarkable enhancement for the dinuclear complexes 5 and 5′compared to 1-4 due to the increase of electronic delocalization on the more planar molecular geometry. In general, the phosphorescent emissions of these complexes in CH2Cl2 are the reverse process of their lowest energy absorption transitions, except that of 4 is assigned as 3[π∗−π]/3MLCT transition because of the strengthened electronic localization effect and the interaction with the solvent in the lowest triplet state. In addition, these complexes hold promise as a new kind of nonlinear optical material owing to their large static first hyperpolarizabilities (β0). The β0 value has increased in the dinuclear complexes in contrast to those of the mononuclear ones owing to their larger transition moment and smaller transition energy.  相似文献   

19.
The rational design, synthesis and characterization of five phosphorescent platinum complexes [(C^N)Pt(acac)] [Hacac = acetylacetone, HC^N = 1-methyl-2-(4-fluorophenyl)benzoimidazole (H-FMBI), 1-methyl-2-phenylbenzoimidazole (H-MBI), 1,2-diphenyl-benzoimidazole (H-PBI), 1-(4-(3,6-di-t-butylcarbazol-9-yl))phenyl-2-phenylbenzoimidazole (t-BuCz-H-PBI), and 1-(4-(3,6-di-(3,6-di-t-butyl-carbazol-9-yl))carbazol-9-yl)phenyl-2-phenylbenzoimidazole (t-BuCzCz-H-PBI)] have been discussed. The crystal structure of (MBI)Pt(acac) shows a nearly ideal square planar geometry around Pt atom and the weak intermolecular interactions with π-π spacing of 3.55 Å. All of the complexes emit green phosphorescence from the metal-to-ligand charge-transfer (MLCT) excited state with high quantum efficiency (0.08-0.17) at room temperature. A multilayer organic light-emitting diode (OLED) with (MBI)Pt(acac) as phosphorescent dopant was fabricated using the method of high-vacuum thermal evaporation, which gives a maximum brightness, luminous and power efficiency of 13 605 cd/m2, 15.1 cd/A and 4.3 lm/W, respectively. In contrast, the comparable performance can be achieved in the solution-processed OLED based on (t-BuCzPBI)Pt(acac) with a peak brightness, luminous and power efficiency of 13 606 cd/m2, 17.5 cd/A and 8.4 lm/W, respectively. The better device efficiency results from the good square plane of central Pt coordination unit and the inhibition of the aggregates due to bulky and rigid t-butylcarbazole dendrons.  相似文献   

20.
Two series of conjugated polymers with a carbazole moiety were synthesized by Knovenagel and Wittig condensations. The chemical structure, thermogravimetric, photophysical and electrochemical properties of the polymers were characterized by 1H‐NMR, IR, GPC, TG, UV‐vis, FL, and CV. The results indicated that PBM is the most thermally stable one and PBP is the most thermally instable one. The absorption and emission properties of the polymers were adjusted by the modification of chemical structures. The quenching effect of cyano group and oxygen atom results in the lower fluorescence quantum efficiency. The fitted emission spectra suggested that the emission spectra of all the polymers come from different vibronic transitions and aggregation emission. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号