首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
New glycosyl derived ligand and its complexes, with SnCl4·5H2O (1) and (CH3)2SnCl2(2) were synthesized and characterized by spectroscopic (IR, 1H, 13C, and 119Sn NMR, UV-vis, ESI-MS) and analytical methods. Interaction studies of 1 and 2 with CT DNA were studied by using various biophysical techniques, which showed high binding affinity of 2 with CT DNA. In vitro cytotoxicity of complexes 1 and 2 were evaluated against different human cancer cell lines of different histological origins by employing SRB Assay. The organotin(IV) complex 2 exhibited remarkable activity against DWD (oral cancer) cell lines with GI50 values <10 μg/ml. Complex 2 induced apoptosis of DWD cell line at a very low concentration of 1-4 μg/mL.  相似文献   

2.
The one pot reactions carried among ortho-aminophenol, R2SnO (R = Me or Ph) and acetyl acetone, 2-hydroxyacetophenone and 2-hydroxy-3-methylacetophenone led to six new diorganotin(IV) compounds Me2SnL1 (1), Ph2SnL1 (2), Me2SnL2 (3) Ph2SnL2 (4), Me2SnL3 (5) and Ph2SnL3 (6) (H2L1 = 2-(3-hydroxy-1-methyl-but-2-enylideneamino)-phenol, H2L2 and H2L3 = 2-[1-(2-hydroxyaryl)alkylideneamino]-phenol) in good yields. Combination of IR, 1H, 13C and 119Sn NMR and X-ray diffraction techniques along with elemental analyses evidenced the formation of penta-coordinated monomeric species. The crystal structures of ligand H2L1 and complexes 1, 3 and 4 were determined by single crystal X-ray diffraction study. In the solid state, the ligand H2L1 exists as keto-enamine tautomeric form. There are N-H…O intra-molecular hydrogen bonds between amine and carbonyl groups. Diorganotin(IV) complexes 1, 3 and 4 are monomers with TBP (trigonal bipyramidal) geometry surrounding the tin atom. The O, N, O- tridentate ligand places its two oxygen donating atoms in the axial positions, and the nitrogen atom occupies one equatorial position. The two R groups attached to tin occupy the other two equatorial positions. The solution structures were predicted by 119Sn NMR spectroscopy.  相似文献   

3.
Three new complexes of the steroid sodium fusidate (sodium 2-[(1S,2S,5R,6S,7S,10S,11S,13S, 14Z,15R,17R)-13-(acetyloxy)-5,17-dihydroxy-2,6,10,11-tetramethyl tetracyclo[8.7.0.02,7.011,15] heptadecan-14-ylidene]-6-methylhept-5-enoate = (NaFusidate, NaFA)]), with triorganotin(IV) moieties have been prepared and investigated by conventional techniques as FTIR, Mössbauer, ESI-MS and NMR spectroscopy. The isolated compounds showed stoichiometries organotin(IV)/fusidate 1/1, R3Sn(IV)FA (R = Me, FA1; Bu, FA2; Ph, FA3). The ligand coordination sites were determined by FTIR spectroscopic measurements. In the complexes, the carboxylate group of the fusidate ligand behaves as monodentate monoanionic donor, binding the Sn(IV) through one oxygen atom.On the basis of C-Sn-OCOO angles, calculated through the rationalization of the 119Sn Mössbauer parameter nuclear quadrupole splitting, it has been confirmed that, in all the solid state complexes, the Sn(IV) was tetracoordinated in a distorted tetrahedral structure.Further data from 119Sn CP-MAS spectra confirmed the distorted tetrahedral arrangement.In MeOH solution, 1H, 13C and 119Sn NMR spectroscopy showed monomeric complexes, where the carboxylate group mainly acts as monodentate ester-type ligand, and the occurrence of a coordinated solvent molecule to the tin center, as validated by non-relativistic NMR DFT study.  相似文献   

4.
Triorganotin(IV) complexes of the 7-amino-2-(methylthio)[1,2,4]triazolo[1,5-a]pyrimidine-6-carboxylic acid (HL), Me3SnL(H2O), (1), [n-Bu3SnL]2(H2O), (2), Ph3SnL(MeOH), (3), were synthesized by reacting the amino acid with organotin(IV) hydroxides or oxides in refluxing methanol. The complexes have been characterized by elemental analysis, 1H, 13C and 119Sn NMR, IR, Raman and 119Sn Mössbauer spectroscopic techniques. Single crystal X-ray diffraction data were obtained for compounds (2) and (3). Ph3SnL(MeOH) presents a trigonal bipyramidal structure with the organic groups on the equatorial plane and the axial positions occupied by a ligand molecule, coordinated to tin through the carboxylate, and a solvent molecule, MeOH. A similar structure is proposed for Me3SnL(H2O) on the basis of analytical and spectroscopic data. The tributyltin(IV) derivative, [n-Bu3SnL]2(H2O), is characterized by two different tin sites with similar tbp geometry featured by butyl groups on the equatorial plane. Sn(1) and Sn(2) atoms are axially bridged by a ligand molecule binding through the N(4) and the carboxylate group; the two coordination spheres are saturated by another ligand molecule, binding the metal through the carboxylate group, and a water molecule, respectively. Antimicrobial tests on compounds 1 and 2 showed in vitro activity against Gram-positive bacteria.  相似文献   

5.
Eight new organotin (IV) carboxylates, (R3Sn)4(nap)4 (R = Me 1, n-Bu 2), [(R3Sn) (nap)]n (R = Ph 3, PhCH24), (R2Sn) (nap)2 (R = n-Bu 5, Ph 6, PhCH27) and {[R2Sn(nap)]2O}2 (R = Me 8) (nap = (S)-(+)-6-methoxy-α-methyl-2-naphthaleneaceto anion) have been synthesized. All of the complexes have been characterized by elemental analysis, FT-IR, NMR (1H, 13C and 119Sn) spectra. Among these complexes, complexes 1, 3, 5 and 8 were also characterized by X-ray crystallography diffraction analysis, and the data of X-ray crystallography diffraction indicated that complexes 1, 3 and 5 are new chiral organotin (IV) carboxylates complexes. The structural analyses show that complex 1 has a tetranuclear Sn4O8 macrocycle structure, complex 3 has a 1D spring-like chiral helical chain with a columnar channel, complex 5 possesses a dimer structure, and complex 8 has a supramolecular chainlike ladder structure through weak intermolecular non-covalent OO interactions.  相似文献   

6.
Diorganotin(IV)-complexes of the N-nitroso-N-phenylhydroxylaminates (hereinafter cupf), Et2Sn(cupf)2 (1), Bu2Sn(cupf)2 (2), {[Bu2Sn(cupf)]2O}2 (3), t-Bu2Sn(cupf)2 (4) and Oc2Sn(cupf)2 (5, 6) were prepared and characterised by FT-IR and Mössbauer spectroscopic measurements. The binding modes of the ligand were identified by FT-IR spectroscopy, and it was found that the ligand is coordinated in chelating or bridging mode to the organotin(IV) center. The 119Sn Mössbauer and FT-IR studies support the formation of trans-Oh (1-6) structures. The X-ray diffraction analysis of 4 revealed that the tin centre is in a skew-trapezoidal geometry defined by four donors derived from the cupferronato ligands and two carbon atoms from the tin-bound tbutyl substituents. The 119Sn NMR investigations indicate that in solution 4 retains its hexacoordinated nature.  相似文献   

7.
Tin(IV) complexes 1(a and b) and 2(a and b) of valine derived peptide derivatives were synthesized and characterized on the basis of elemental analysis, IR, 1H, 13C, 119Sn NMR, ESI-MS spectra and molar conductance measurements. The C-Sn-C angle was estimated from I3C and 1H NMR data 1J(119Sn, I3C) = 623 Hz; solution 2J(119Sn, 1H) = 93.04 Hz to be 149.9°. In vitro binding studies of complexes 1 and 2 under physiological conditions at room temperature with CT-DNA were carried out employing UV-visible, fluorescence, circular dichroism and viscometric studies. The binding affinity of the complexes was quantified by calculating the Kb values and it follows the order 2a > 1a > 2b > 1b. To further examine the specific mode of binding, the interaction of complexes 2(a and b) were carried out with 5′GMP and 5′TMP by using absorption and NMR (1H, 31P) spectroscopy. The supercoiled pBR322 plasmid DNA cleavage activity of the complexes was ascertained by gel electrophoresis assay. The complexes cleave supercoiled pBR322 plasmid DNA efficiently into its nicked form at micromolar concentrations.  相似文献   

8.
Two diorganotin(IV) complexes of the general formula R2Sn[Ph(O)CCH-C(Me)N-C6H4(O)] (R = Ph, 1a; R = Me, 1b) have been synthesized from the corresponding diorganotin(IV) dichlorides and the ligand, 3-(2-hydroxyphenylimino)-1-phenylbutan-1-one (1) in methanol at room temperature in presence of triethylamine. Both compounds have been characterized by elemental analyses, IR and 1H, 13C, 15N, 119Sn NMR spectra. The structures of the free ligand and the complexes have been confirmed by single crystal X-ray diffraction. There are three independent molecules in the crystal structure of the ligand 1 and in all three the O-bound proton is transferred to the imine nitrogen and makes an intramolecular N-H?O hydrogen bond with the carbonyl oxygen. In turn this makes an intermolecular hydrogen bond with the phenolic H atom. The crystal structure of 1 is trigonal and a new polymorph; triclinic and monoclinic forms have already been published. In 1a, the central tin atom adopts distorted trigonal-bipyramidal coordination geometry whereas in dimeric 1b it is distorted octahedral when including the intermolecular Sn-O(phenolic) bond [2.7998(20) Å]. The δ (119Sn) values for the complexes 1a and 1b are −306.6 and −127.9 ppm, respectively, thus indicating penta-coordinated Sn centres in solution.  相似文献   

9.
A series of cis-bis{5-[(E)-2-(aryl)-1-diazenyl]quinolinolato}diphenyltin(IV) complexes have been synthesized and characterized by 1H, 13C, 119Sn NMR, ESI-MS, IR and 119mSn Mössbauer spectroscopic techniques in combination with elemental analysis. The structures of a ligand L6H (i.e., 5-[(E)-2-(4-ethoxyphenyl)-1-diazenyl]quinolin-8-ol) and three diphenyltin(IV) complexes, viz., Ph2Sn(L1)2 · (CH3)2CO (1), Ph2Sn(L4)2 (4) and Ph2Sn(L5)2 (5) (L = 5-[(E)-2-(aryl)-1-diazenyl]quinolin-8-ol: aryl = phenyl - (L1H); 4′-methylphenyl - (L4H) and 4′-bromophenyl - (L5H)) were determined by single crystal X-ray diffraction. In general, the complexes were found to adopt a distorted cis-octahedral arrangement around the tin atom. These complexes retain their solid-state structure in non-coordinating solvent as evidenced by 119Sn NMR spectroscopic results. The in vitro cytotoxicity of 1 is reported and compared with Ph2Sn(Ox)2 (Ox = deprotonated quinolin-8-ol) against seven well characterized human tumor cell lines.  相似文献   

10.
A number of organotin(IV) complexes with pyridine mono- and dicarboxylic acids (containing ligating -COOH group(s) and aromatic {N} atoms) were prepared in the solid state. The bonding sites of the ligands were determined by means of FT-IR spectroscopic measurements. It was found that in most cases the -COO groups form bridges between two central {Sn} atoms, thereby leading to polymeric (oligomeric) complexes. On this basis, the experimental 119Sn Mössbauer spectroscopic data were treated with partial quadrupole splitting approximations. The calculations predicted the existence of complexes with octahedral (oh) and trigonal-bipyramidal (tbp) structures, but the formation of complexes with pentagonal-bipyramidal (pbp) structures could not be ruled out. Single-crystals of 2-picolinic and pyridine-2,6-dicarboxylic acid Bu2Sn(IV)2+ complexes were obtained. The X-ray diffraction studies revealed that the central {Sn} atoms are in a pbp environment with bond distances characteristic of organotin(IV) compounds. The two butyl groups are located in axial positions. 119Sn NMR measurements in dmso solution and in the solid state indicated that the polymeric structures of the complexes are not retained in solution. The results of the solid-state 119Sn NMR measurements for compounds 1a, 2a and 6a are in agreement with the structures predicted by Mössbauer spectroscopy and revealed by X-ray diffraction.  相似文献   

11.
Two diorganotin(IV) complexes of the general formula R2Sn[Ph(O)CCH-C(Me)N-NC(O)Ph] (R=Ph, 1; R=Me, 2) have been synthesised from the corresponding diorganotin(IV) dichloride and the ligand 4-phenyl-2,4-butanedionebenzoylhydrazone(2−) (H2L), derived from benzoyl acetone and benzoyl hydrazide in methanol at room temperature in presence of triethylamine. The syntheses were performed under very mild conditions, at room temperature and without exclusion of air or moisture from the reaction vessel. Previously, rigorous conditions have been considered necessary for these species. The two compounds have been characterised by elemental analysis, IR and 1H, 13C, 15N, 119Sn NMR spectra, and their structures have been confirmed single crystal X-ray structure analysis. The central tin atom of both complexes adopts a distorted trigonal bipyramidal coordination with two ligand oxygen atoms in axial positions, the nitrogen atom of the ligand and two organic groups on tin occupying equatorial sites. 2 has crystallised with two crystallographically independent molecules in the asymmetric unit. The δ(119Sn) values for the complexes 1 and 2 are −151.5 and −146.8 ppm, respectively, thus indicating penta-coordinated tin centres.  相似文献   

12.
A series of dibutylbis{5-[(E)-2-(aryl)-1-diazenyl]-2-hydroxybenzoato}tin(IV) complexes, Bu2Sn(LH)2, have been prepared and characterized by 1H, 13C, 119Sn NMR and ESI mass spectrometry in solution. The structures of the complexes Bu2Sn(L1H)2 (1), Bu2Sn(L3H)2 (3), Bu2Sn(L4H)2 (4), and Bu2Sn(L6H)2 (6) (L = 5-[(E)-2-(aryl)-1-diazenyl]-2-hydroxybenzoate: aryl = phenyl (L1H), 3-methylphenyl (L3H), 4-methylphenyl (L4H) and 4-bromophenyl (L6H)) were determined by X-ray crystallography and 117Sn CP-MAS NMR spectroscopy in the solid state. In general, the complexes were found to adopt a skew-trapezoidal bipyramidal arrangement around the tin atom. In addition, there are weak bridging intermolecular Sn?O contacts in complexes 1 and 3, but not in 4 and 6, where one of the hydroxy oxygen atoms from a neighboring molecule coordinates weakly with the Sn atom, thereby completing a seventh coordination site in the extended Sn coordination sphere. The Sn?O distance is 3.080(2) and 3.439(2) Å in 1 and 3, respectively, which are significantly shorter than the sum of the van der Waals radii of the Sn and O atoms (∼3.8 Å). In 1, this Sn?O interaction links the molecules into polymeric chains. In 3, these interactions link pairs of molecules into head-to-head dimeric units. The in vitro cytotoxicity of compound 2 indicates better results than cisplatin and etoposide against seven well characterized human tumor cell lines.  相似文献   

13.
Reactions of potassium β-{[(E)-1-(2-hydroxyaryl)alkylidene]amino}propionates (L1HK-L3HK) and potassium β-{[(2Z)-(3-hydroxy-1-methyl-2- butenylidene)]amino}propionate (L4HK) with R3SnCl (R = Ph and nBu) and nBu2SnCl2 yielded complexes of composition Ph3SnL1H (1), Ph3SnL2H (2), Ph3SnL4H (3), nBu3SnL1H (4), and {[nBu2Sn(L2H)]2O}2 (5) and {[nBu2Sn(L3H)]2O}2 (6), respectively. These complexes have been characterized by 1H, 13C, 119Sn NMR, ESI-MS, IR and 119mSn Mössbauer spectroscopic techniques in combination with elemental analyses. The crystal structures of 1, 4, 5 and 6 were determined. In the solid state, compound 1 is a one-dimensional polymer built from SnPh3 moieties bridged by single carboxylate ligands, but two alternating modes of bridging are present along the polymeric chain. Compound 4 is also a one-dimensional polymer built from SnBu3 moieties bridged by the two carboxylate O-atoms of a single ligand, but only one mode of bridging is present. Di-n-butyltin compounds 5 and 6 are centrosymmetric tetranuclear bis(dicarboxylatotetrabutyldistannoxane) complexes containing a planar Sn4O2 core in which two μ3-oxo O-atoms connect an Sn2O2 ring to two exocyclic Sn-atoms. The four carboxylate ligands display two different modes of coordination where both modes involve bridging of two Sn-atoms. The solution structures were predicted by 119Sn NMR spectroscopy. The in vitro cytotoxic activity of compound 5 against WIDR, M19 MEL, A498, IGROV, H226, MCF7 and EVSA-T human tumor cell lines is reported.  相似文献   

14.
Two novel dinuclear organotin(IV) complexes [n-Bu2Sn(imda)(H2O)]2·Bipy (1) and [n-Bu2Sn(imda)(H2O)]2·Phen (2) [H2imda = iminodiacetic acid, Bipy = 2,2′-bipyridine and Phen = 1,10-phenanthroline] were synthesised and characterized employing IR, 1H, 13C, 119Sn NMR, and 119Sn Mössbauer spectroscopic and elemental analyses. Single crystal X-ray crystallography of 1 has confirmed that it is a binuclear Sn(IV) species formed via carboxylate bridges where each metal adopted a seven coordinate distorted pentagonal bipyramidal geometry. The iminodiacetate dianion (imda2−) acts as a potential tridentate [N,O,O] carboxylate bridging ligand. The packing revealed that the additional α-diimine (Bipy or Phen) does not coordinate to metal ion. However, its presence in the crystal lattice as spacer helps for the formation of a supramolecular framework by bringing the two binuclear species close enough through extensive H-bonding. The in vitro cytotoxicity of compounds 1 and 2 indicate better results than cisplatin against three tumor cell lines investigated.  相似文献   

15.
Three new chiral organotin(IV) carboxylates, Me2Sn(nap)2 (1), {[Me2Sn(nap)]2O}2 (2) and Me3Sn(nap) (3) (nap = (S)-(+)-6-methoxy-α-methyl-2-naphthaleneaceto anion) have been synthesized. All of them have been characterized by elemental analysis, multinuclear (1H, 13C and 119Sn) NMR and IR spectroscopy. The crystal structures of 1 and 2 have been determined by X-ray diffraction analysis. The bicapped tetrahedral molecules of 1 are linked by C-H?O hydrogen bonds into homochiral helices, which are also interconnected by C-H?O interactions to form an inter-helical meander-shaped network. The molecule of 2 is a parallel double helix incorporating four chiral tin centers in a Sn4O10C4 ladder type molecular skeleton. The C-H?O interactions translate the molecular chirality of 2 throughout the crystal via formation of infinite ribbons. These ribbons in their turn are further cross-linked by C-H?O hydrogen bonds. The structural characterization of the complexes 1-3 in solution has been performed by routine multinuclear 1H, 13C and 119Sn NMR as well as specialized multidimensional (1H-119Sn-gHMQC and 1H-DOSY) experiments. The relevant 2J1H-119Sn and 1J13C-119Sn coupling constants have been extracted and related to molecular geometries on the basis of the literature data. The measurement of the translational diffusion constants using diffusion ordered spectroscopy allowed the estimation of the spherical hydrodynamic radii of the newly prepared structures.  相似文献   

16.
Six new chiral triorganotin(IV) complexes, {(R3Sn)2[C3H6(COO)2]}n (R = Me: 1; Bu: 2), {(R3Sn)2[C4H8(COO)2]}n (R = Me: 3; Bu: 4), and {(R3Sn)2[C2H4O(COO)2]}n (R = Me: 5; Bu: 6) have been prepared by treatment of (R)-(+)-methylsuccinic acid, (S)-(+)-methylglutaric acid and l-(−)-malic acid, with the corresponding R3SnCl (R = Me, Bu) and sodium ethoxide in methanol. All the complexes were characterized by elemental analysis, FT-IR, NMR (1H, 13C, 119Sn) spectroscopy and TGA. Except for 3, all of the complexes were also characterized by X-ray crystallography. The structural analyses reveal that complexes 1 and 5 have 2D network structures in which (R)-(+)-methylsuccinic acid and l-(−)-malic acid act as tetradentate ligands coordinated to trimethyltin(IV) ions. Complexes 2 and 4 have 3D metal-organic framework structures in which the deprotoned acids serve as tetradentate ligands. Complex 6 adopts a 1D zigzag chain structure and forms a 2D supramolecular framework through intermolecular C-H?O interactions. In addition, the antitumor activities of complexes 1-6 have been studied. We also have measured the specific rotation of the chiral dicarboxylic acids and the organotin derivatives.  相似文献   

17.
A set of C,N-chelated organotin(IV) ferrocenecarboxylates, [LCN(n-Bu)Sn(O2CFc)2] (1), [(LCN)2Sn(O2CFc)2] (2), [LCN(n-Bu)Sn(O2CCH2Fc)2] (3), [LCN(n-Bu)Sn(O2CCH2CH2Fc)2] (4), [LCN(n-Bu)Sn(O2CCHCHFc)2] (5), [LCN(n-Bu)Sn(O2CfcPPh2)2] (6), [(LCN)2Sn(O2CfcPPh2)2] (7), and [LCN(n-Bu)2Sn(O2CFc)] (8) (LCN = 2-(N,N-dimethylaminomethyl)phenyl, Fc = ferrocenyl and fc = ferrocene-1,1′-diyl) has been synthesized by metathesis of the respective organotin(IV) halides and carboxylate potassium salts and characterized by multinuclear NMR and IR spectroscopy. The spectral data indicated that the tin atoms in diorganotin(IV) dicarboxylates bearing one C,N-chelating ligand (1 and 3-6) are seven-coordinated with a distorted pentagonal bipyramidal environment around the tin constituted by the n-butyl group, the chelating LCN ligand and bidentate carboxylate. Compounds 2 and 7 possessing two chelating LCN ligands comprise octahedrally coordinated tin atoms and monodentate carboxylate donors, whereas compound 8 assumes a distorted trigonal bipyramidal geometry around tin with the carboxylate binding in unidentate fashion. The solid state structures determined for 1⋅C6D6 and 2 by single-crystal X-ray diffraction analysis are in agreement with spectroscopic data. Compounds 1, 3-5, and 8 were further studied by electrochemical methods. Whereas the oxidations of ferrocene units in bis(carboxylate) 2 and monocarboxylate 8 proceed in single steps, compound 1 undergoes two closely spaced one-electron redox waves due to two independently oxidized ferrocenyl groups. The spaced analogues of 2, compounds 3-5, again display only single waves corresponding to two-electron exchanged.  相似文献   

18.
Seven Schiff base adducts of organotin(IV), RSnLCl2, which L is o-vanillin-2-thiophenoylhydrazone, and R is n-C4H9 (1), Me (2), Ph (3), and [R2SnL], which L is o-vanillin-2-thiophenoylhydrazone, R is n-C4H9 (4), Me (5), Ph (6), PhCH2 (7) have been synthesized. Those products were characterized by elemental analysis, IR, 1H, 13C and 119Sn NMR spectra. The crystal and molecular structures of compounds 1, 4, and 6 have been determined by X-ray single crystal diffraction. In the crystal of compound 1 the tin atom is rendered six-coordinate in a distorted octahedral configuration by coordinating with the N atom of the Schiff base ligand, in compounds 4 and 6 the central tin atoms are five-coordinate in distorted trigonal-bipyramidal geometry and the comparison of the IR spectra reveal that disappearance of the bands assigned to carboxyl unambiguously conforms the ligand coordinate with the tin atom in enol form.  相似文献   

19.
Reactions of nBu2SnCl(L1) (1), where L1 = acid residue of 5-[(E)-2-(4-methoxyphenyl)-1-diazenyl]quinolin-8-ol, with various substituted benzoic acids in refluxing toluene, in the presence of triethylamine, yielded dimeric mixed ligand di-n-butyltin(IV) complexes of composition [nBu2Sn(L1)(L2-6)]2 where L2 = benzene carboxylate (2), L3 = 2-[(E)-2-(2-hydroxy-5-methylphenyl)-1-diazenyl]benzoate (3), L4 = 5-[(E)-2-(4-methylphenyl)-1-diazenyl]-2-hydroxybenzoate (4), L5 = 2-{(E)-4-hydroxy-3-[(E)-4-chlorophenyliminomethyl]-phenyldiazenyl}benzoate (5) and L6 = 2-[(E)-(3-formyl-4-hydroxyphenyl)-diazenyl]benzoate (6). All complexes (1-6) have been characterized by elemental analyses, IR, 1H, 13C and 117Sn NMR and 119Sn Mössbauer spectroscopy and their structures were determined by X-ray crystallography, complemented by 117Sn CP-MAS NMR spectroscopy studies in the solid state. The crystal structure of 1 reveals a distorted trigonal bipyramidal coordination geometry around the Sn-atom where the Cl- and N-atoms of ligand L1 occupy the axial positions. In complexes 2-5, the molecules are centrosymmetric dimers in which the Sn-atoms are connected by asymmetric μ-O bridges through the quinoline O-atom to give an Sn2O2 core. The differences in the Sn-O bond lengths within the bridge range from 0.28 to 0.48 Å, with the longer of the Sn-O distances being in the range 2.56-2.68 Å and the most symmetrical bridge being in 5. The carboxylate group is almost symmetrically bidentate coordinated to the tin atom in 5 (Sn-O distances of 2.327(2) and 2.441(2) Å), unlike the other complexes in which the distance of the carboxylate carbonyl O-atom from the tin atom is in the range 2.92-3.03 Å. The structure of 5 displays a more regular pentagonal bipyramidal coordination geometry about each tin atom than in 2-4. In contrast, the centrosymmetric dimeric structure of 6 involves asymmetric carboxylate bridges, resulting in a different Sn2C2O4 motif. The Sn-O bond lengths in the bridge differ by about 0.6 Å, with the longer distance involving the carboxylate carbonyl O-atom (2.683(2) and 2.798(2) Å for two molecules in the asymmetric unit). The carboxylate carbonyl O-atom has a second, even longer intramolecular contact to the Sn-atom to which the carboxylate group is primarily coordinated, with these Sn?O distances being as high as 3.085(2) and 2.898(2) Å. If the secondary interactions are considered, all the di-n-butyltin(IV) complexes (2-6) display a distorted pentagonal bipyramidal arrangement about each tin atom in which the n-butyl groups occupy the axial positions.  相似文献   

20.
Two types of di-n-butyltin(IV) complexes {[nBu2Sn(O2CR)]2O}2 · L 1-4 and nBu2Sn(O2CR)2Y 5-8 (when L=H2O, R=2-pyrazine 1; L=0, R=2-pyrimidylthiomethylene 2, 1-naphthoxymethylene 3; L=C6H6, R=2-naphthoxymethylene 4; when Y=H2O, R=2-pyrazine 5; Y=0, R=2-pyrimidylthiomethylene 6, 1-naphthoxymethylene 7, 2-naphthoxymethylene 8) have been prepared in 1:1 or 1:2 molar ratios by reactions of di-n-butyltin oxide with the heteroatomic (N, O or S) carboxylic acids. The complexes 1-8 are characterized by elemental, IR, 1H and 13C NMR spectra. And except for complexes 6 and 7, the complexes 1-5 and 8 are also characterized by X-ray crystallography diffraction analyses, which reveal that the tin atom of complex 5 is seven-coordinated, while the complexes 1-4 and 8 are all hexa-coordinated. The nitrogen atom of the aromatic ring in complexes 1 and 5 participates in the interactions with the Sn atom.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号