首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A series of triarylmethanol derivatives containing combinations of phenyl, 1-naphthyl, 4-dimethylamino-4′-stilbenyl, ferrocenyl or 4-[2-ferrocenylethenyl]phenyl groups have been prepared by reaction of 4-[4-Me2NC6H4CC]C6H4Li or 4-[FcCC]C6H4Li (Fc = ferrocenyl) with ferrocenecarboxaldehyde, ferrocenyl phenyl ketone, methyl ferrocenecarboxylate, 1-naphthyl phenyl ketone, ethyl benzoate or diethyl carbonate. The carbinols readily form the corresponding intensely coloured carbenium ions in acid solution which have significant electronic absorption in the near infrared. Initial studies indicate that they also possess substantial first hyperpolarisabilities.  相似文献   

2.
The synthesis of the new ruthenium(II) allenylidene complex [ClRu(dppe)2CCC11H6N2][OTf] (4) (dppe = 1,2-bis(diphenylphosphino)ethane) terminated with a 4,5-diazafluorene ligand is reported. Further coordination of that metal allenylidene to ruthenium and rhenium moieties leads to the bimetallic adducts [ClRu(dppe)2CCC11H6N2{Ru(bpy)2}][B(C6F5)4]3 (5a), [ClRu(dppe)2CCC11H6N2{Ru(tBu-bpy)2}][PF6]3 (5b) and [ClRu(dppe)2CCC11H6N2{Re(CO)3Cl}][OTf] (6). Their optical and electrochemical properties show that the allenylidene moiety is an attractive molecular clip for the access to larger original redox-active homo/heteronuclear multi-component supramolecular assemblies. The X-ray crystal structure of the allenylidene metal building block is also described.  相似文献   

3.
Oxidative addition reactions of Cl2CPR (R = 2,4,6-tris(trifluoromethyl)phenyl (Ar) or 2,6-bis(trifluoromethyl)phenyl (Ar′) with Pt(PPh3)4 yield the cis and trans (at platinum) complexes [PtCl(ClCPAr)(PPh3)2] and [PtCl(ClCPAr′)(PPh3)2]. All starting materials and intermediates have been characterised by NMR spectroscopy. The crystal and molecular structures of the trans-platinum complexes have been determined by single-crystal X-ray diffraction at low temperature.  相似文献   

4.
The alkenylaminoallenylidene complex [Ru(η5-C9H7){CCC(NEt2)[C(Me)CPh2]}{κ(P)-Ph2PCH2CHCH2}(PPh3)][PF6] (2) has been prepared by the reaction of the allenylidene [Ru(η5-C9H7)(CCCPh2){κ(P)-Ph2PCH2CHCH2}(PPh3)][PF6] (1) with the ynamine MeCCNEt2. The reaction proceeds regio- and stereoselectively, and the insertion of the ynamine takes place exclusively at the CβCγ bond of the unsaturated chain. The secondary allenylidene [Ru(η5-C9H7){CCC(H)[C(Me)CPh2]}{κ(P)-Ph2PCH2CHCH2}(PPh3)][PF6] (3) is obtained, in a one-pot synthesis, from the reaction of aminoallenylidene 2 with LiBHEt3 and subsequent treatment with silica. Moreover, the addition of an excess of NaBH4 to a solution of the complex 2 in THF at room temperature gives exclusively the alkynyl complex [Ru(η5-C9H7){CCCH2[C(Me)CPh2]}{κ(P)-Ph2PCH2CHCH2}(PPh3)] (5). The heating of a solution of allenylidene derivative 3 in THF at reflux gives regio- and diastereoselectively the cyclobutylidene complex [Ru(η5-C9H7) (PPh3)][PF6](4) through an intramolecular cycloaddition of the CC allyl and the CαCβ bonds in the allenylidene complex 3. The structure of complex 4 has been determined by single crystal X-ray diffraction analysis.  相似文献   

5.
The carbene ruthenium complex [1,3-bis(2,6-dimethylphenyl)-4,5-dihydroimidazol-2-ylidene](C5H5N)2(Cl)2RuCHPh (8) was prepared by the reaction of [1,3-bis (2,6-dimethylphenyl)-4,5-dihydroimidazol-2-ylidene](PPh3)(Cl)2RuCHPh (7) with pyridine and used as a highly effective catalyst for the cross-metathesis of acrylonitrile with various functionalized olefins.  相似文献   

6.
Treatment of the thiosemicarbazones 4-FC6H4C(Me)NN(H)C(S)NHR, (R = Me, a; Ph, b) and 2-ClC6H4C(Me)NN(H)C(S)NHR (R = Ph, c) with lithium tetrachloropalladate(II) in methanol or palladium(II) acetate in acetic acid gave the tetranuclear cyclometallated complex [Pd{4-FC6H3C(Me)NNC(S)NHR}]4 (1a, 1b) and [Pd{2-ClC6H3C(Me)NNC(S)NHPh}]4 (1c). Reaction of these tetramers with the diphosphines dppe, t-dppe, dppp or dppb in a 1:2 molar ratio gave the dinuclear cyclometallated complexes [(Pd{4-FC6H3C(Me)NNC(S)NHR})2(μ-Ph2P(CH2)nPPh2)], (n = 2, 2a, 2b; 3, 4a, 4b; 4, 5a, 5b), [(Pd{4-FC6H3C(Me)NNC(S)NHPh})2(μ-Ph2PCHCHPPh2)], (3a, 3b) and [(Pd{2-ClC6H3C(Me)NNC(S)NHR})2(μ-Ph2P(CH2)nPPh2)], (n = 2, 2c, 2d; 3, 4c, 4d; 4, 5c, 5d), [(Pd{2-ClC6H3C(Me)NNC(S)NHPh})2(μ-PPh2CHCHPPh2)], (3c, 3d). The X-ray crystal structure of the ligand b and the complexes 3c, 4a and 4d were determined. The structures of complexes 4a and 4d show that the different disposition of the chain cyclometallated of the thiosemicarbazones (in the same orientation or in the opposite one) is due to the different H bonds produced.  相似文献   

7.
Ruthenium benzylidene complex (H2IMes)(2-CH3-C5H4N)(Cl)2RuCHPh [H2IMes = 1,3-bis(2,6-dimethylphenyl)-4,5-dihydroimidazol-2-ylidene] (4), which introduced ortho substituted pyridine as dissociating ligand to weaken Ru-N bond and accelerate initiation through steric hindrance, was prepared by the reaction of (H2IMes)(PPh3)(Cl)2RuCHPh (1) with 2-methylpyridine and proved to exhibit enhanced catalytic activity for cyano-contained olefin metathesis.  相似文献   

8.
Treatment of MCl3(OC6H3-2-tBu-6-CHNC6F5)(THF) (M = Ti, Zr) with a variety of different potassium iminopyrrolate salts (K+[RNCHC4H3N]), (R = phenyl, cyclo-hexyl, ethyl) afforded the corresponding titanium and zirconium mixed-ligand complexes MCl2(N-O)(N-N). The molecular structures of TiCl2(OC6H3-2-tBu-6-CHNC6F5)(C2H5NCHC4H3N) (1c), TiCl2(OC6H3-2-tBu-6-CHNC6F5)(C6H11NCHC4H3N) (1b) and ZrCl2(OC6H3-2-tBu-6-CHNC6F5)(C6H11NCHC4H3N) (2b) show distorted octahedral geometries with trans-O,N/cis-Cl2 arrangements. On activation with MAO the titanium (iminopyrrolato)(salicylaldiminato) complexes show excellent activities in ethylene polymerisation and are significantly more effective ethylene/propylene copolymerisation catalysts, both in terms of activity and propene incorporation, than either of the parent complexes. The ethylene-propylene copolymers show ca. 80% 1,2 regioselectivity and at high propylene incorporation tend towards an alternating structure.  相似文献   

9.
The preparation and characterisation of a diphosphaalkene, (Me3Si)PC(OSiMe3){C(C2H4)3C}C(OSiMe3)P(SiMe3), and the second example of a diphosphaalkyne, PC{C(C2H4)3C}CP, are described. In addition, the reaction of another diphosphaalkyne, PC{C(C6H4)3C}CP, with MeLi/LiBr in the presence of tmeda has given the first diphosphavinyl lithium complex, [MePC{Li2Br(tmeda)2}{C(C6H4)3C}C{Li2Br(tmeda)2}PMe], which is stable at room temperature and has been crystallographically characterised.  相似文献   

10.
11.
12.
Whereas {Ru(dppm)Cp*}2(μ-CCCC) (2) is the only product formed by deprotonation of [{Ru(dppm)Cp*}2{μ(CCHCHC)}]+ with dbu, a mixture of 2 with Ru{CCCHCH(PPh2)2[RuCp*]}(dppm)Cp* (3) and {Cp*Ru(PPh2CHCCH-)}2 (4) is obtained with KOBut. A similar reaction with [{Ru(dppm)Cp*}2{μ(CCMeCMeC)}]+ (5) gave Ru{CCCMeCH(PPh2)2[RuCp*]}(dppm)Cp* (6). X-ray structures of 4, 5 and 6 confirm the presence of the 1-ruthena-2,4-diphosphabicyclo[1.1.1]pentane moiety, which is likely formed by an intramolecular attack of the deprotonated dppm ligand on C(1) of the vinylidene ligand. Protonation of {Ru(dppe)Cp*}2(μ-CCCC) (8-Ru) regenerates its precursor [{Ru(dppe)Cp*}2{μ(CCHCHC)}]2+ (7-Ru). Ready oxidation of the bis(vinylidene) complex affords the cationic carbonyl [Ru(CO)(dppe)Cp*]PF6 (9) (X-ray structure).  相似文献   

13.
The Perkow reaction of triethyl phosphite and β-alkoxyvinyl trihalogenomethyl ketones, which have common acyclic or cyclic structural fragment: -O-CC-C(O)CX2Cl, yielded dienyl phosphates: -O-CC-C[OP(O)(OEt)2]CX2 where X = F or Cl, whereas γ-bromo-β-methoxy-α,β-unsaturated trifluoromethyl ketone CF3C(O)CHC(OMe)CH2Br gave diene CF3C[OP(O)(OEt)2]CH-C(OMe)CH2.  相似文献   

14.
The condensation reaction of CH3COC5H4M(CO)3SnCl3 (M = Mo or W) with PyCONHNH2 (Py = 2,3,4-pyridyl or 2-pyridylmethyl) in mild conditions yields cyclodiazastannoxides fused cyclopentadienyl M-Sn bonded organometallic heterocycle {μ-[C5H4(CH3)CN-NC(O)PyH]M(CO)3SnCl3}. The similar reaction of CH3COC5H4M(CO)3SnCl3 with ArCONHNH2 (Ar = 2-furanyl) gives complexes μ-[C5H4(CH3)CN-NC(O)Ar]M(CO)3SnCl2(H2O), in which the water molecule can be replaced by other N-donor ligands, such as pyridine or 4,4-bipyridine. Arene-bridged organometallic heterocyclic complexes μ-{[C5H4(CH3)CN-NC(O)]2C6H4}{M(CO)3SnCl2(Solvent)}2 have also been prepared by the reaction of CH3COC5H4M(CO)3SnCl3 with terephthaloyl hydrazine. In these new organometallic heterocyclic complexes, it seems that the tin atom prefers to be six-coordinate through absorbing the chloridion or solvent molecules.  相似文献   

15.
Several complexes have been obtained from reactions carried out in early attempts to prepare the diynyl complexes Ru(CCCCR)(dppe)Cp* (R = H, SiMe3). These have been identified crystallographically as the acyl complex Ru{CCC(O)Me}(dppe)Cp* (3), the cationic imido complex [Ru{CCC(NH2)Me}(dppe)Cp*]PF6 (4), the binuclear butenynylallenylidene [{Ru(dppe)Cp*}2{μ-CCC(OMe)CHCMeCC}]PF6 (5), and the bis(ethynyl)cyclobutenylidene [{Ru(dppe)Cp*}2{μ-CCC4H2(SiMe3)CC}]PF6 (6). NMR studies of 5 have revealed the existence of two isomers. Plausible routes for their formation from the putative butatrienylidene intermediate [Ru(CCCCH2)(dppe)Cp*]+ (A) are discussed.  相似文献   

16.
The formation of 3-aminocrotononitrile and 4-amino-2,6-dimethylaminopyrimidine has been observed during the course of the hydrogermolysis reaction between a germanium amide and a germanium hydride, either as the free amines or bound to germanium as ligands consisting of their conjugate bases. These species arise from the dimerization or trimerization of acetonitrile, and have only been detected when germanium amides having substantial steric bulk at the germanium center are employed in the reaction. The isolation of germanium-bound 3-aminocrotononitrile compounds suggests that α-germyl nitrile species R3GeCH2CN that result from the reaction of the germanium amides R3GeNMe2 with CH3CN solvent also can further react with CH3CN to generate the 3-aminocrotononitrile and 4-amido-2,6-dimethylaminopyrimidine species. The two germanes Ph3Ge[NHC(CH3)CHCN] and 2,6-dimethyl-4-(triphenylgermylamino)pyrimidine have been prepared and structurally characterized, and the conversion of Ph3GeCH2CN to Ph3Ge[NHC(CH3)CHCN] and 2,6-dimethylamino-4-(triphenylgermylamino)pyrimidine as well as the conversion of Ph3Ge[NHC(CH3)CHCN] to 2,6-dimethyl-4-(triphenylgermylamino)pyrimidine in acetonitrile solvent has been observed using 1H NMR spectroscopy.  相似文献   

17.
A versatile synthetic route to conjugated bimetallic ruthenium complexes with σ,σ-bridging azobenzene chains was developed, and new ruthenium complexes with various ligands were synthesized and characterized. These bimetallic complexes showed a remarkable absorption in the visible region (λmax: 452-483 nm), and undergo trans-to-cis isomerization under UV light irradiation for short time. Electrochemical study showed that the metal centers in bimetallic complexes containing the CHCHC6H4NNC6H4CHCH bridge interact with each other.  相似文献   

18.
Pentacarbonyl dimethylamino(methoxy)allenylidene tungsten, [(CO)5WCCC(OMe)NMe2] (1b), reacts with one equivalent of primary amines, H2NR, by selectively replacing the methoxy group to give dimethylamino(amino)allenylidene complexes, [(CO)5WCCC(NHR)NMe2]. When the amine is used in excess both terminal groups, OMe as well as NMe2, are replaced by the primary amino group giving [(CO)5WCCC(NHR)2 ]. The NHR substituent in these complexes may be modified by deprotonation with LDA followed by alkylation. The replacement of the methoxy group in 1b by a secondary amino group, NR2, can be achieved by a stepwise process. Addition of Li[NR2] to the Cγ atom of 1b affords an alkynyl tungstate. Subsequent OMe elimination induced by TMS-Cl/SiO2 yields the allenylidene complexes [(CO)5WCCC(NR2)NMe2]. When bidentate diamines are used instead of monoamines both substituents, OMe and NMe2, are replaced and allenylidene complexes are formed in which Cγ constitutes part of a 5-, 6-, or 7-membered heterocycle. The reaction of [(CO)5CrCCC(OMe)NMe2] (1a) with diethylene triamine affords an allenylidene complex with a heterocyclic endgroup carrying a dangling CH2CH2NH2 substituent. All reactions follow a strict regioselective attack of the nucleophile at Cγ and proceed with good to excellent yields. The addition of N-H to the CαCβ bond is not observed. By applying either one of these routes nearly any substitution pattern in bis(amino)allenylidene complex can be realized.  相似文献   

19.
The σ-alkynyl complexes Ni(η5-C5H5)(PPh3)-CC-R (1), Ni(η5-C5H5)(PPh3)-CC-X-CCH (2) and Ni(η5-C5H5)(PPh3)-CC-X-CC-Ni(η5-C5H5)(PPh3) (3), reactwith 7,7,8,8-tetracyanoquinodimethane, TCNQ, at 30 °C by insertion of the alkyne CC into a CC(CN)2 bond to give Ni(η5-C5H5)(PPh3)-C{C6H4C(CN)2}-C{C(CN)2}-R (4), from 1, Ni(η5-C5H5)(PPh3)-C{C6H4C(CN)2}-C{C(CN)2}-X-CCH (5), from 2, and Ni(η5-C5H5)(PPh3)-C{C6H4C(CN)2}-C{C(CN)2}-X-CC-Ni(η5-C5H5)(PPh3) (6),and Ni(η5-C5H5)(PPh3)-C{C6H4C(CN)2}- C{C(CN)2}-X-C{C(CN)2}-C{C6H4C(CN)2}-Ni(η5-C5H5)(PPh3) (7),from 3 {R = (a) C6H5, (b) 4-PhC6H4, (c) 4-Me2NC6H4, (d) 1-C10H7 (1-naphthyl), (e) 2-C10H7 (2-naphthyl), (f) 9-C14H9 (9-phenanthryl), (g) 9-C14H9 (9-anthryl), (h) 3-C16H9 (3-pyrenyl), (i) 1-C20H11 (1-perylenyl), (j) 2-C4H3S (2-thienyl), (k) C10H9Fe (ferrocenyl = Fc) and (l) H; X = (a) nothing, (b) 1,4-C6H4, (c) 1,3-C6H4 and (d) 4,4′-C6H4-C6H4}. The reaction is regiospecificand the other possible insertion product, R-C{C6H4C(CN)2}-C{C(CN)2}-Ni(η5-C5H5)(PPh3) etc., is not formed. Under the same conditions, there is no evidencefor the reaction of TCNQ with the -CCH of 2, PhCCH, 1,4-C6H4(CCH)2 or FcCCH, or for the reaction of more than one CC(CN)2 of TCNQ with a Ni-alkynyl moiety. Complexes 4-7 are all air-stable, purple solids which have been characterised by elemental analysis and spectroscopy (IR, UV-Vis, 1H NMR and 13C NMR),and by X-ray diffraction for 4a, 4b and 4l. The UV-Vis spectra of 4-7 are very similar. This implies that all contain the same active chromophore which, it is suggested, is Ni-C(5)C6H4C(CN)2 and not R-C(4)C(CN)2. This isconsistent with the molecular structures of 4a, 4b and 4l which show that the first of these potentially chromophoric fragments is planar or close to it with an in-built potential for delocalisation, whilst in the second the aryl group R is almost orthogonal to the CC(CN)2 plane. The molecular structures of 4a, 4b and 4l also reveal a short Ni?C(4) separation, indicative of a Ni → C(4) donor-acceptor interaction. The electrochemistry of 4a shows aquasi reversible oxidation at ca. 1 V and complicated reduction processes. It is typical of most 4, but 4l is different in that it shows the same quasi reversible oxidation at ca. 1 V but two reversible reductions at −0.26 and −0.47 V (vs. [Fe(η5-C5Me5)2]+/0 0.0 V).  相似文献   

20.
Reacting [PtCl(PTA)3]Cl(PTA = 1,3,5-triaza-7-phosphatricyclo[3.3.1.13,7]decane) with KSeCN in aqueous or MeOH medium results in the abstraction of the PTA ligands to yield SePTA. The reaction also proceeds quantitatively by direct reaction of PTA and KSeCN in water or methanol. The methylated PTA ligand, [PTA-Me]I (1-methyl-1-azonia-3,5-diaza-7-phosphatricyclo[3.3.1.13,7]decane iodide), reacts accordingly with KSeCN, albeit significantly slower. The crystal structure of SePTA, 1, and [SePTA-Me]I · CH3OH, 2, revealed PSe bond distances of 2.0991(19) and 2.100(2) Å, respectively. The first order phosphorous selenium coupling constants, 1JP-Se (D2O), of 722 and 788 Hz for SePTA and [SePTA-Me]I, respectively, indicates the latter is significantly less electron rich.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号