首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The thiocarbonyl analogue of Vaska’s compound is produced in high yield by first treating IrCl(CO)(PPh3)2 with CS2 and methyl triflate to give [Ir(κ2-C[S]SMe)Cl(CO)(PPh3)2]CF3SO3 (1), secondly, reacting 1 with NaBH4 to give IrHCl(C[S]SMe)(CO)(PPh3)2 (2), and finally heating 2 to induce elimination of both MeSH and CO to produce IrCl(CS)(PPh3)2 (3). When IrCl(CS)(PPh3)2 is treated with Hg(CHCHPh)2 the novel 2-iridathiophene, Ir[SC3H(Ph-3)(CHCHPh-5)]HCl(PPh3)2 (4) is produced. The X-ray crystal structure of the iodo-derivative of 4, Ir[SC3H(Ph-3)(CHCHPh-5)]HI(PPh3)2 (5) confirms the unusual 2-metallathiophene structure. Treatment of IrCl(CS)(PPh3)2 with Hg(CHCPh2)2 produces both a coordinatively unsaturated 1-iridaindene, Ir[C8H5(Ph-3)]Cl(PPh3)2 (6) and a chelated dithiocarboxylate complex, Ir(κ2-S2CCHCPh2)Cl(CHCPh2)(PPh3)2 (7). X-ray crystal structure determinations for 6 and 7 are reported.  相似文献   

2.
Reaction between Os(CO)2(PPh3)3 and Me3SnH produces Os(SnMe3)H(CO)2(PPh3)2 (1). Multinuclear NMR studies of solutions of 1 reveal the presence of four geometrical isomers, the major one being that with mutually cis triphenylphosphine ligands and mutually trans CO ligands. Os(SnMe3)H(CO)2(PPh3)2 undergoes a redistribution reaction, at the trimethylstannyl ligand, when treated with Me2SnCl2 giving Os(SnMe2Cl)H(CO)2(PPh3)2 (2). Solutions of 2 again show the presence of four isomers but now the major isomer is that with mutually trans triphenylphosphine ligands and mutually cis CO ligands. The redistribution reaction of 1 with SnI4 produces Os(SnMeI2)H(CO)2(PPh3)2 (3) which exists in solution as only one isomer, that with mutually trans triphenylphosphine ligands and mutually trans CO ligands. Treatment of 3 with I2 cleaves the Os-H bond with retention of geometry giving Os(SnMeI2)I(CO)2(PPh3)2 (4). The crystal structure of 4 has been determined. No isomerization of the trans dicarbonyl complex 4 occurs when 4 is heated, instead there is a formal loss of “MeSnI” and formation of OsI2(CO)2(PPh3)2 (5).  相似文献   

3.
Reaction between Os[B(OEt)2]Cl(CO)(PPh3)2 and 1,2-ethanediol in the presence of Me3SiCl (1 equivalent) leads to the tethered boryl complex, Cl(CO)(PPh3)2 (1), in which one ethoxy substituent on the boryl ligand is exchanged with one hydroxy group of the 1,2-ethanediol leaving the other OH group available to coordinate to osmium, so giving a six coordinate complex. This formulation is confirmed by crystal structure determination. The same reactants, but with 2 equivalents of Me3SiCl, lead to the yellow, coordinatively unsaturated complex, OsCl(CO)(PPh3)2 (2). Complex (2) adds CO to give OsCl(CO)2 (PPh3)2 (3). Crystal structure determinations of 2 and 3 reveal a very marked difference in the Os-B distances found in the five coordinate complex 2 (2.043(4) Å) and the six coordinate complex 3 (2.179(7) Å). In a reaction similar to that used for forming 2 but with 1,3-propanediol replacing 1,2-ethanediol, the product is OsCl(CO)(PPh3)2 (4). The crystal structure for 4 is also reported.  相似文献   

4.
The reaction of [Ru(CO)2(PPh3)3] (1) with o-styryldiphenylphophine (SP) (2) gave [Ru(CO)2(PPh3)(SP)] (3) in 83% yield. This styrylphosphine ruthenium complex 3 can also be synthesized by the reaction of [Ru(p-MeOC6H4NN)(CO)2(PPh3)2]BF4 (4) with NaBH4 and 2 in 50% yield. When “Ru(CO)(PPh3)3” generated by the reaction of [RuH2(CO)(PPh3)3] (8) with trimethylvinylsilane reacted with 2, [Ru(CO)(PPh3)2(SP)] (10) was produced in moderate yield as an air sensitive solid. The spectral and X-ray data of these complexes revealed that the coordination geometries around the ruthenium center of both complexes corresponded to a distorted trigonal bipyramid with the olefin occupying the equatorial position and the C-C bonding in the olefin moiety in 3 and 10 contained a significant contribution from a ruthenacyclopropane limiting structure. Complexes 3 and 10 showed catalytic activity for the hydroamination of phenylacetylene 11 with aniline 12. Ruthenium complex 3 in the co-presence of NH4PF6 or H3PW12O40 proves to be a superior catalyst system for this hydroamination reaction. In the case of the reaction using H3PW12O40 as an additive, ketimines (13) was obtained in 99% yield at a ruthenium-catalyst loading of 0.1 mol%. Some aniline derivatives such as 4-methoxy, 4-trifluoromethyl-, and 4-bromoanilines can also be used in this hydroamination reaction.  相似文献   

5.
In addition to well-known dinuclear phenylselenolato palladium complexes, the reaction of [PdCl2(PPh3)2] and NaSePh affords small amounts of novel trinuclear and hexanuclear complexes [Pd3Se(SePh)3(PPh3)3]Cl (1) and [Pd6Cl2Se4(SePh)2(PPh3)6] (2). Complex 1 is triclinic, P1?, a=13.6310(2), b=16.2596(2), c=16.9899(3) Å, α=83.1738(5), β=78.9882(5), γ=78.7635(5)°. Complex 2 is monoclinic, C2/c, a=25.7165(9), b=17.6426(8), c=27.9151(14) Å, β=110.513(2)°. There are no structural forerunners for 1, but the hexanuclear complex 2 is isostructural with [Pd6Cl2Te4(TeR)2(PPh3)6] (R=Ph, C4H3S) that have been observed as one of the products in the oxidative addition of R2Te2 to [Pd(PPh3)4]. Mononuclear palladium complexes may play a significant role as building blocks in the formation of the polynuclear complexes.  相似文献   

6.
The reaction of the labile compound [Re2(CO)8(CH3CN)2] with 2,3-bis(2-pyridyl)pyrazine in dichloromethane solution at reflux temperature afforded the structural dirhenium isomers [Re2(CO)8(C14H10N4)] (1 and 2), and the complex [Re2(CO)8(C14H10N4)Re2(CO)8] (3). In 1, the ligand is σ,σ′-N,N′-coordinated to a Re(CO)3 fragment through pyridine and pyrazine to form a five-membered chelate ring. A seven-membered ring is obtained for isomer 2 by N-coordination of the 2-pyridyl groups while the pyrazine ring remains uncoordinated. For 2, isomers 2a and 2b are found in a dynamic equilibrium ratio [2a]/[2b]  =  7 in solution, detected by 1H NMR (−50 °C, CD3COCD3), coalescence being observed above room temperature. The ligand in 3 behaves as an 8e-donor bridge bonding two Re(CO)3 fragments through two (σ,σ′-N,N′) interactions. When the reaction was carried out in refluxing tetrahydrofuran, complex [Re2(CO)6(C14H10N4)2] (4) was obtained in addition to compounds 1-3. The dinuclear rhenium derivative 4 contains two units of the organic ligand σ,σ′-N,N′-coordinated in a chelate form to each rhenium core. The X-ray crystal structures for 1 and 3 are reported.  相似文献   

7.
The triosmium cluster 1,2-Os3(CO)10(MeCN)2 reacts rapidly with the diphosphine ligand 2,3-bis(diphenylphosphino)-N-p-tolylmaleimide (bmi) at room temperature to give bmi-bridged cluster 1,2-Os3(CO)10(bmi) (2b) as the major product, along with the chelating isomer 1,1-Os3(CO)10(bmi) (2c) and the hydride-bridged cluster HOs3(CO)9[μ-(PPh2)CC{PPh(C6H4)}C(O)N(tolyl-p)C(O)] (3) as minor by-products. All three cluster compounds have been isolated and fully characterized in solution by IR and NMR spectroscopies (1H and 31P), and X-ray crystallography in the case of 2c. Cluster 2b is unstable and readily isomerizes to 2c in quantitative yield on mild heating. The kinetics for the conversion of 2b → 2c have been measured over the temperature range of 318-348 K in toluene solution, and based on the observed activation parameters a nondissociative isomerization process that proceeds via a transient μ2-bridged phosphine moiety is presented. Near-UV photolysis of cluster 2c at room temperature affords HOs3(CO)9[μ-(PPh2)CC{PPh(C6H4)}C(O)N(tolyl-p)C(O)] (3) with a quantum yield of 0.017. The reactivity of clusters 2b, 2c, and 3 is discussed with respect to related diphosphine-substituted Os3(CO)10(P-P) clusters prepared by our groups.  相似文献   

8.
Reactions between [Fe(η-C5H5)(MeCO)(CO)(L)], L = PPh3 (1), PMe3 (2), PPhMe2 (3), PCy3 (4), CO (5), and B(C6F5)3 give new complexes [Fe(η-C5H5){MeCOB(C6F5)3}(CO)(L)] L = PPh3 (7), PMe3 (8), PPhMe2 (9), PCy3 (10), CO (11), where B(C6F5)3 coordinates selectively to the O-acyl groups. Hydrolysis of 7 gives [Fe(η-C5H5){HOB(C6F5)3}(CO)(PPh3)] (6). The X-ray structures of 6, 8 and 11 have been determined. Calculations, using density functional theory, demonstrate that the charge transfer to the acyl group on Lewis acid coordination is more significant in the σ than the π system. Both effects lead to a lengthening of the acyl C-O bond thus π populations cannot be inferred from the distance changes.  相似文献   

9.
The objective of the present work was to synthesize mononuclear ruthenium complex [RuCl2(CO)2{Te(CH2SiMe3)2}2] (1) by the reaction of Te(CH2SiMe3)2 and [RuCl2(CO)3]2. However, the stoichiometric reaction affords a mixture of 1 and [RuCl2(CO){Te(CH2SiMe3)2}3] (2). The X-ray structures show the formation of the cis(Cl), cis(C), trans(Te) isomer of 1 and the cis(Cl), mer(Te) isomer of 2. The 125Te NMR spectra of the complexes are reported. The complex distribution depends on the initial molar ratio of the reactants. With an excess of [RuCl2(CO)3]2 only 1 is formed. In addition to the stoichiometric reaction, a mixture of 1 and 2 is observed even when using an excess of Te(CH2SiMe3)2. Complex 1 is, however, always the main product. In these cases the 125Te NMR spectra of the reaction solution also indicates the presence of unreacted ligand.  相似文献   

10.
Reaction between Os(SnClMe2)(κ2-S2CNMe2)(CO)(PPh3)2 and either LiSnMe3 or KSnPh3 produces the distannyl complexes, Os(SnMe2SnMe3)(κ2-S2CNMe2)(CO)(PPh3)2 (1) or Os(SnMe2SnPh3)(κ2-S2CNMe2)(CO)(PPh3)2 (3), respectively. Similarly, reaction between Os(SnClMe2)Cl(CO)2(PPh3)2 (6) and KSnPh3 produces the distannyl complex, Os(SnMe2SnPh3)Cl(CO)2(PPh3)2 (7). In the 119Sn NMR spectra of these stable osmium(II) distannyl complexes both the α-Sn and β-Sn atoms show well-resolved 119Sn-119Sn and 119Sn-117Sn coupling. Each of these three distannyl complexes can be selectively functionalised at the α-Sn atom by reaction with SnCl2Me2 giving Os(SnClMeSnMe3)(κ2-S2CNMe2)(CO)(PPh3)2 (2), Os(SnClMeSnPh3)(κ2-S2CNMe2)(CO)(PPh3)2 (4), and Os(SnClMeSnPh3)Cl(CO)2(PPh3)2 (8), respectively. Treatment of compounds 3 or 7 with iodine also cleaves one α-methyl group, selectively, to give Os(SnIMeSnPh3)(κ2-S2CNMe2)(CO)(PPh3)2 (5), or Os(SnIMeSnPh3)Cl(CO)2(PPh3)2 (9). Crystal structures for complexes 3 and 7 have been determined.  相似文献   

11.
Novel half-sandwich [C9H5(SiMe3)2]ZrCl3 (3) and sandwich [C9H5(SiMe3)2](C5Me4R)ZrCl2 (R = CH3 (1), CH2CH2NMe2 (2)) complexes were prepared and characterized. The reduction of 2 by Mg in THF lead to (η5-C9H5(SiMe3)2)[η52(C,N)-C5Me4CH2CH2N(Me)CH2]ZrH (7). The structure of 7 was proved by NMR spectroscopy data. Hydrolysis of 2 resulted in the binuclear complex ([C5Me4CH2CH2NMe2]ZrCl2)2O (6). The crystal structures of 1 and 6 were established by X-ray diffraction analysis.  相似文献   

12.
The oxidative addition of CH3I to planar rhodium(I) complex [Rh(TFA)(PPh3)2] in acetonitrile (TFA is trifluoroacetylacetonate) leads to the formation of cationic, cis-[Rh(TFA)(PPh3)2(CH3)(CH3CN)][BPh4] (1), or neutral, cis-[Rh(TFA)(PPh3)2(CH3)(I)] (4), rhodium(III) methyl complexes depending on the reaction conditions. 1 reacts readily with NH3 and pyridine to form cationic complexes, cis-[Rh(TFA)(PPh3)2(CH3)(NH3)][BPh4] (2) and cis-[Rh(TFA)(PPh3)2(CH3)(Py)][BPh4] (3), respectively. Acetylacetonate methyl complex of rhodium(III), cis-[Rh(Acac)(PPh3)2(CH3)(I)] (5), was obtained by the action of NaI on cis-[Rh(Acac)(PPh3)2(CH3)(CH3CN)][BPh4] in acetone at −15 °C. Complexes 1-5 were characterized by elemental analysis, 31P{1H}, 1H and 19F NMR. For complexes 2, 3, 4 conductivity data in acetone solutions are reported. The crystal structures of 2 and 3 were determined. NMR parameters of 1-5 and related complexes are discussed from the viewpoint of their isomerism.  相似文献   

13.
Reactions of Os3(CO)12 with 1,8-bis(diphenylphosphino)naphthalene (dppn) are described. Crystallographically characterised complexes isolated from a reaction carried out in refluxing toluene are Os3(μ-H)2{μ-PPh2(nap)PPh(C6H4)}2(CO)6 (1), Os3(μ-H){μ3-PPh2(nap)PPh(C6H4)}(CO)8 (2) and Os2(μ-PPh2){μ-PPh2(nap)}(CO)5 (3) (nap=1,8-C10H6), while at r.t. in the presence of ONMe3, only Os3(CO)11{PPh2(1-C10H7)} (4) was isolated. While 1 and 2 contain ligands formed by metallation of a Ph group of dppn, as found also in complexes obtained from dppn and Ru3(CO)12, ligands in 3 and 4 are formed by cleavage of a P-nap bond, not found in the Ru series.  相似文献   

14.
The reaction of the formyl-capped cluster HC(O)CCo3(CO)9 (1) with the diphosphine ligand 4,5-bis(diphenylphosphino)-4-cyclopenten-1,3-dione (bpcd) in the presence of added Me3NO leads to the production of the disubstituted cluster HC(O)CCo3(CO)7(bpcd) (2). Thermolysis of 2 in toluene at 60 °C gives the methylidyne-capped cluster HCCo3(CO)7(bpcd) (4) and the phosphido-bridged cluster Co3(CO)7221-P(Ph)CC(PPh2)C(O)CH2C(O)] (5). Cluster 4 has been independently prepared from HCCo3(CO)9 and bpcd and shown to serve as the precursor to 5. The new clusters 2, 4, and 5 have been isolated and characterized in solution by IR and NMR (1H and 31P) spectroscopies and their solid-state structures have been established by X-ray diffraction analyses. Both clusters 2 and 4 contain 48e- and exhibit triangular Co3 cores with a chelating and bridging bpcd ligand in the solid state, respectively. The structure of 5 provides unequivocal support for the loss of the methylidyne capping ligand and P-Ph bond cleavage attendant in the activation of 4 and confirms the presence of the face capping seven-electron μ221-P(Ph)CC(PPh2)C(O)CH2C(O) ligand in the final product. The fluxionality displayed by the bpcd ligand in clusters 2 and 4 and the decarbonylation behavior of the formyl moiety in the former cluster are discussed relative to related alkylidyne-capped Co3 derivatives.  相似文献   

15.
Starting from [M(CO)6], seven-coordinated complexes of tungsten and molybdenum containing the facially coordinating ligands HC(pz)3 (1) and MeC(CH2PPh2)3 (2) were obtained in a two-step reaction sequence. The complexes have a 4:3 piano stool geometry with almost perfect CS symmetry in the crystal. In solution, they show the typical fluxional behavior for seven-coordinated complexes even at low temperature. Complete oxidative decarbonylation occurs when [HC(pz)3Mo(CO)3] (4) or [MeC(CH2PPh2)3Mo(CO)3] (6) are treated with an excess of I2 or Br2.  相似文献   

16.
Treatment of CH2(PPh2)2 with n-BuLi/t-BuOK in diethyl ether affords the potassium diphosphinomethanide complex [K{CH(PPh2)2}(OEt2)0.5] (1) in high yield. Metathesis of two equivalents of 1 with LaI3(THF)4 yields the heteroleptic bis-diphosphinomethanide complex [La{CH(PPh2)2}2(I)(THF)2] (2). X-ray crystallography shows the diphosphinomethanide ligands in 2 adopt different coordination modes in the solid state; one adopts a κ2-PP mode with no La-C contact, and the other adopts an η3-PCP mode, thus giving an eight-coordinate lanthanum centre.  相似文献   

17.
The compounds Ru3(CO)9(SnPh3)2(NCMe)(μ-H)2 (1), Ru3(CO)10(SnPh3)2(μ-H)2 (2), Ru(CO)4(SnPh3)2 (3) and Ru(CO)4(SnPh3)(H) (4) were obtained from the reaction of Ru3(CO)10(NCMe)2 with HSnPh3 in hexane solvent. Compounds 1, 3 and the new compound Ru3(CO)7(SnPh3)3(NCMe)2(μ-H)3 (5) were obtained from reaction of Ru3(CO)10(NCMe)2 with HSnPh3 in a CH2Cl2 and MeCN solvent mixture. Compound 2 and the new compound Ru3(CO)9(SnPh3)3(μ-H)3 (6) were obtained from reactions of 1 and 5 with CO, respectively. Compounds 2 and 6 eliminated benzene when heated to yield Ru3(CO)10(μ-SnPh2)2 (7) and Ru3(CO)9(μ-SnPh2)3 (8) which contain bridging SnPh2 ligands. Compound 7 was found to react with to yield the adduct, (9) in 59% yield by the addition of groups to two of the Ru-Sn bonds to the bridging SnPh2 ligands. Fenske-Hall molecular orbital calculations were performed to provide an understanding of the metal-metal bonding in the clusters of 7 and 9. Compounds 1, 2, 5, 6, 7 and 9 were characterized structurally by single crystal X-ray diffraction analysis.  相似文献   

18.
Five organic-inorganic hybrid gallium oxalate-phosphates, [Ga2(PO4)2(H2O)(C2O4)0.5](C3N2H12)0.5(H2O) (1), [Ga2(PO4)2(C2O4)0.5](C2N2H10)0.5(H2O) (2), [Ga2(PO4)2(C2O4)0.5](C3N2H12)0.5 (3), [Ga2(PO4)2(H2PO4)0.5(C2O4)0.5](C4N3H16)0.5 (H2O)1.5 (4) and [Ga2.5(PO4)2.5(H2O)1.5(C2O4)0.5](C4N3H15)0.5 (5), have been synthesized by using 1,3-diaminopropane, ethylenediamine and diethylene triamine as structure-directing agents under hydrothermal condition. The structures of 1-5 are based on Ga4(PO4)4(C2O4) building unit made up from Ga2O8(C2O4) oxalate-bridging dimer and alternating PO4 and GaO4 tetrahedral units. Compound 1 is layered structure where the building units link together in the same orientation. Corner sharing of these similar layers result in three-dimensional (3-D) structure 2. However, in compound 3, the building units arrange in a wave-like way to generate two types of eight member ring (8MR) channels. Both 4 and 5 contain the layers where the building units have an opposite orientation. Those layers are linked by H2PO4 group and Ga(PO4)(H2O)3 cluster, respectively, to form 3-D frameworks with 12MR large pore channels. Compounds 2-5 exhibit intersecting 3-D channels where the protoned amines are located.  相似文献   

19.
[Cp4Fe4(CO)4] (1) reacts with p-BrC6H4Li and MeOH in sequence to afford the functionalized cluster [Cp3Fe4(CO)4(C5H4-p-C6H4Br)] (2), while the reaction of 2 with n-BuLi and MeOH produces [Cp2Fe4(CO)4(C5H4Bu)(C5H4-p-C6H4Br)] (3). The double cluster [Cp3Fe4(CO)4(C5H4)]2(p-C6H4) (4) has been prepared by treatment of [Cp4Fe4(CO)4] with p-C6H4Li2 and MeOH in sequence. The electrochemistry of 2 and 4, as well as the crystal structure of 4 have been investigated.  相似文献   

20.
Reactions of Mo(II)-tetraphosphine complex [MoCl24-P4)] (2; P4 = meso-o-C6H4(PPhCH2CH2PPh2)2) with a series of small molecules have been investigated. Thus, treatment of 2 with alkynes RCCR′ (R = Ph, R′ = H; R = p-tolyl, R′ = H; R = Me, R′ = Ph) in benzene or toluene gave neutral mono(alkyne) complexes [MoCl2(RCCR′)(κ3-P4)] containing tridentate P4 ligand, which were converted to cationic complexes [MoCl(RCCR′)(κ4-P4)]Cl having tetradentate P4 ligand upon dissolution into CDCl3 or CD2Cl2. The latter complexes were available directly from the reactions of 2 with the alkynes in CH2Cl2. On the other hand, treatment of 2 with 1 equiv. of XyNC (Xy = 2,6-Me2C6H3) afforded a seven-coordinate mono(isocyanide) complex [MoCl2(XyNC)(κ4-P4)] (7), which reacted further with XyNC to give a cationic bis(isocyanide) complex [MoCl(XyNC)24-P4)]Cl (8). From the reaction of 2 with CO, a mono(carbonyl) complex [MoCl2(CO)(κ4-P4)] (9) was obtained as a sole isolable product. Reaction of 9 with XyNC afforded [MoCl(CO)(XyNC)(κ4-P4)]Cl (10a) having a pentagonal-bipyramidal geometry with axial CO and XyNC ligands, whereas that of 7 with CO resulted in the formation of a mixture of 10a and its isomer 10b containing axial CO and Cl ligands. Structures of 7 and 9 as well as [MoCl(XyNC)24-P4)][PF6](8′) and [MoCl(CO)(XyNC)(κ4-P4)][PF6] (10a′) derived by the anion metathesis from 8 and 10a, respectively, were determined in detail by the X-ray crystallography.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号